In Exercises 23-26, refer to the preference table that was given prior to Exercise 3 regarding choices for improvement of college life. Use that table to rank the choices using the specified method.
The plurality method
The university administration has asked a group of student leaders to vote on the aspects of college life to target for improvement over the next year. The choices were (D)ining facilities, (A)thletic facilities, (C)ampus security, and the (S)tudent union building. The votes are summarized in the following preference table. Use this information to answer Exercises
Preference | Number of Ballots | |||||
|
|
|
|
|
|
|
|
A | D | A | C | C | S |
|
C | C | S | D | S | A |
|
S | S | D | S | A | C |
|
D | A | C | A | D | D |
Voting on improving college life. What option is selected using the plurality method?
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Mathematics All Around, Books a la carte edition (6th Edition)
- 5. [10 marks] Determine whether the graph below has a perfect matching. Explain why your answer is correct. ข พarrow_forward(c) Utilize Fubini's Theorem to demonstrate that E(X)= = (1- F(x))dx.arrow_forward(c) Describe the positive and negative parts of a random variable. How is the integral defined for a general random variable using these components?arrow_forward
- Let k ≥ 1, and let G be a k-regular bipartite graph with bipartition X, Y . Prove that |X| is the minimum size of a vertex cover in G.arrow_forward3. [10 marks] Let Go = (V,E) and G₁ = (V,E₁) be two graphs on the same set of vertices. Let (V, EU E1), so that (u, v) is an edge of H if and only if (u, v) is an edge of Go or of G1 (or of both). H = (a) Show that if Go and G₁ are both Eulerian and En E₁ = Ø (i.e., Go and G₁ have no edges in common), then H is also Eulerian. (b) Give an example where Go and G₁ are both Eulerian, but H is not Eulerian.arrow_forward26. (a) Provide an example where X, X but E(X,) does not converge to E(X).arrow_forward
- (b) Demonstrate that if X and Y are independent, then it follows that E(XY) E(X)E(Y);arrow_forward(d) Under what conditions do we say that a random variable X is integrable, specifically when (i) X is a non-negative random variable and (ii) when X is a general random variable?arrow_forward29. State the Borel-Cantelli Lemmas without proof. What is the primary distinction between Lemma 1 and Lemma 2?arrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill