COLLEGE PHYSICS
13th Edition
ISBN: 2810014673880
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 9CQ
Why does a dull hypodermic needle hurt more than a sharp one?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.
Give a more general expression for the magnitude of the torque τ. Rewrite the answer found in Part A in terms of the magnitude of the magnetic dipole moment of the current loop m. Define the angle between the vector perpendicular to the plane of the coil and the magnetic field to be ϕ, noting that this angle is the complement of angle θ in Part A.
Give your answer in terms of the magnetic moment mm, magnetic field B, and ϕ.
Calculate the electric and magnetic energy densities at thesurface of a 3-mm diameter copper wire carrying a 15-A current. The resistivity ofcopper is 1.68×10-8 Ω.m.Prob. 18, page 806, Ans: uE= 5.6 10-15 J/m3 uB= 1.6 J/m3
Chapter 11 Solutions
COLLEGE PHYSICS
Ch. 11 - What physical characteristic distinguishes a fluid...Ch. 11 - Which of the following substances are fluids at...Ch. 11 - Why are gases easier to compress than liquids and...Ch. 11 - How do gases differ from liquids?Ch. 11 - Approximately how does the density of air vary...Ch. 11 - Give an example in which density is used to...Ch. 11 - Figure 11.40 shows a glass of ice water filled to...Ch. 11 - How is pressure related to the sharpness of a...Ch. 11 - Why does a dull hypodermic needle hurt more than a...Ch. 11 - The outward force on one end of an air tank was...
Ch. 11 - Why is force exerted by static fluids always...Ch. 11 - In a remote location near the North Pole, an...Ch. 11 - How do jogging on soft ground and wearing padded...Ch. 11 - Toe dancing (as in ballet) is much harder on toes...Ch. 11 - How do you convert pressure units like millimeters...Ch. 11 - Atmospheric pressure exerts a large force (equal...Ch. 11 - Why does atmospheric pressure decrease more...Ch. 11 - What are two reasons why mercury rather than water...Ch. 11 - Figure 11.41 shows how sandbags placed around a...Ch. 11 - Why is it difficult to swim under water in the...Ch. 11 - Is there a net force on a due to atmospheric...Ch. 11 - Does atmospheric pressure add to the gas pressure...Ch. 11 - You can break a strong wine bottle by pounding a...Ch. 11 - Suppose the master cylinder in a hydraulic system...Ch. 11 - Explain why the fluid reaches equal levels on...Ch. 11 - Figure 11.17 shows how a common measurement of...Ch. 11 - Considering the magnitude of typical arterial...Ch. 11 - More force is required to pull the plug in a full...Ch. 11 - Do fluids exert buoyant forces in a "weightless"...Ch. 11 - Will the same ship float higher in salt water than...Ch. 11 - Marbles dropped into a partially filled bathtub...Ch. 11 - The density of oil is less than that of water, yet...Ch. 11 - Is surface tension due to cohesive or adhesive...Ch. 11 - Is capillary action due to cohesive or adhesive...Ch. 11 - Birds such as ducks, geese, and swans have greater...Ch. 11 - Water beads up on an oily sunbather, but not on...Ch. 11 - Could capillary action be used to move fluids in a...Ch. 11 - What effect does capillary action have on the...Ch. 11 - Pressure between the inside chest wall and the...Ch. 11 - Gold is sold by the troy ounce (31.103 g). What is...Ch. 11 - Mercury is commonly supplied in flasks containing...Ch. 11 - (a) What is the mass of a deep breath of air...Ch. 11 - A straightforward method of finding the density of...Ch. 11 - Suppose you have a coffee mug with a circular...Ch. 11 - (a) A rectangular gasoline tank can hold 50.0 kg...Ch. 11 - A trash compactor can reduce the volume of its...Ch. 11 - A 2.50-kg steel gasoline can holds 20.0 L of...Ch. 11 - What is the density of 18.0-karat gold that is a...Ch. 11 - There is relatively little empty space between...Ch. 11 - As a woman walks, her entire weight is momentarily...Ch. 11 - The pressure exerted by a phonograph needle on a...Ch. 11 - Nail tips exert tremendous pressures when they are...Ch. 11 - What depth of mercury creates a pressure of 1.00...Ch. 11 - The greatest ocean depths on the Earth are found...Ch. 11 - Verify that the SI unit of hpg is N/m2.Ch. 11 - Water towers store water above the level of...Ch. 11 - The aqueous humor in a person's eye is exerting a...Ch. 11 - How much force is exerted on one side of an 8.50...Ch. 11 - What pressure is exerted on the bottom of a...Ch. 11 - Calculate the average pressure exerted on the palm...Ch. 11 - The left side of the heart creates a pressure of...Ch. 11 - Show that the total force on a rectangular dam due...Ch. 11 - How much pressure is transmitted in the hydraulic...Ch. 11 - What force must be exerted on the master cylinder...Ch. 11 - A crass host pours the remnants of several bottles...Ch. 11 - A certain hydraulic system is designed to exert a...Ch. 11 - (a) Verify that work input equals work output for...Ch. 11 - Find the gauge and absolute pressures in the...Ch. 11 - (a) Convert normal blood pressure readings of 120...Ch. 11 - How tall must a water-filled manometer be to...Ch. 11 - Pressure cookers have been around for more than...Ch. 11 - Suppose you measure a standing person's blood...Ch. 11 - A submarine is stranded on the bottom of the ocean...Ch. 11 - Assuming bicycle tires are perfectly flexible and...Ch. 11 - What fraction of ice is submerged when it floats...Ch. 11 - Logs sometimes float vertically in a lake because...Ch. 11 - Find the density of a fluid in which a hydrometer...Ch. 11 - If your body has a density of 995 kg/m3, what...Ch. 11 - Bird bones have air pockets in them to reduce...Ch. 11 - A rock with a mass of 540 g in air is found to...Ch. 11 - Archimedes' principle can be used to calculate the...Ch. 11 - In an immersion measurement of a woman's density,...Ch. 11 - Some fish have a density slightly less than that...Ch. 11 - (a) Calculate the buoyant force on a 2.00-L helium...Ch. 11 - (a) What is the density of a woman who floats in...Ch. 11 - A certain man has a mass of 80 kg and a density of...Ch. 11 - A simple compass can be made by placing a small...Ch. 11 - What fraction of an iron anchor's weight will be...Ch. 11 - Scurrilous con artists have been known to...Ch. 11 - A twin-sized air mattress used for camping has...Ch. 11 - Referring to Figure 11.21, prove that the buoyant...Ch. 11 - (a) A 75.0-kg man floats in freshwater with 3.00%...Ch. 11 - What is the pressure inside an alveolus having a...Ch. 11 - (a) The pressure inside an alveolus with a 2.00104...Ch. 11 - What is the gauge pressure in millimeters of...Ch. 11 - Calculate the force on the slide wire in Figure...Ch. 11 - Figure 11.35(a) shows the effect of tube radius on...Ch. 11 - We stated in Example 11.12 that a xylem tube is of...Ch. 11 - What fluid is in the device shown in Figure 11.29...Ch. 11 - If the gauge pressure inside a rubber balloon with...Ch. 11 - Calculate the gauge pressures inside...Ch. 11 - Suppose water is raised by capillary action to a...Ch. 11 - Calculate the contact angle for olive oil if...Ch. 11 - When two soap bubbles touch, the larger is...Ch. 11 - Calculate the ratio of the heights to which water...Ch. 11 - What is the ratio of heights to which ethyl...Ch. 11 - During forced exhalation, such as when blowing up...Ch. 11 - You can chew through very tough objects with your...Ch. 11 - One way to force air into an unconscious person's...Ch. 11 - Heroes in movies hide beneath water and breathe...Ch. 11 - Gauge pressure in the fluid surrounding an...Ch. 11 - A full-term fetus typically has a mass of 3.50 kg....Ch. 11 - If the pressure in the esophagus is -2.00 mm Hg...Ch. 11 - Pressure in the spinal fluid is measured as shown...Ch. 11 - Calculate the maximum force in newtons exerted by...Ch. 11 - During heavy lifting, a disk between spinal...Ch. 11 - When a person sits erect, increasing the vertical...Ch. 11 - (a) How high will water rise in a glass capillary...Ch. 11 - A negative pressure of 25.0 atm can sometimes be...Ch. 11 - Suppose you hit a steel nail with a 0.500-kg...Ch. 11 - Calculate the pressure due to the ocean at the...Ch. 11 - The hydraulic system of a backhoe is used to lift...Ch. 11 - Some miners wish to remove water from a mine...Ch. 11 - You are pumping up a bicycle tire with a hand...Ch. 11 - Consider a group of people trying to stay afloat...Ch. 11 - The alveoli in emphysema victims are damaged and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
For the generic equilibrium HA(aq) ⇌ H + (aq) + A- (aq), which of these statements is true?
The equilibrium con...
Chemistry: The Central Science (14th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Name each of the following:
Organic Chemistry (8th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 15.8-mW laser puts out a narrow beam 2.0 mm in diameter.Suppose that the beam is in free space. What is the rms value of E in the beam? What isthe rms value of B in the beam?Prob. 28, page 834. Ans: Erms= 1380 V/m, Brms =4.59×10-6 Tarrow_forwardA 4.5 cm tall object is placed 26 cm in front of a sphericalmirror. It is desired to produce a virtual image that is upright and 3.5 cm tall.(a) What type of mirror should be used, convex, or concave?(b) Where is the image located?(c) What is the focal length of the mirror?(d) What is the radius of curvature of the mirror?Prob. 25, page 861. Ans: (a) convex, (b) di= -20.2 cm, i.e. 20.2 cm behind the mirror,(c) f= -90.55 cm, (d) r= -181.1 cm.arrow_forwardA series RCL circuit contains an inductor with inductance L=3.32 mH, and a generator whose rms voltage is 11.2 V. At a resonant frequencyof 1.25 kHz the average power delivered to the circuit is 26.9 W.(a) Find the value of the capacitance.(b) Find the value of the resistance.(c) What is the power factor of this circuit?Ans: C=4.89 μF, R=4.66 Ω, 1.arrow_forward
- A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.70 km/s in the +x-direction experiences a force of 2.06×10−16 N in the +y-direction, and an electron moving at 4.40 km/s in the −z-direction experiences a force of 8.10×10−16 N in the +y-direction. What is the magnitude of the magnetic force on an electron moving in the −y-direction at 3.70 km/s ? What is the direction of this the magnetic force? (in the xz-plane)arrow_forwardA particle with a charge of −5.20 nC is moving in a uniform magnetic field of B =−( 1.22 T )k^. The magnetic force on the particle is measured to be F=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the x component of the velocity of the particle.arrow_forwardIs it possible for average velocity to be negative?a. Yes, in cases when the net displacement is negative.b. Yes, if the body keeps changing its direction during motion.c. No, average velocity describes only magnitude and not the direction of motion.d. No, average velocity describes only the magnitude in the positive direction of motion.arrow_forward
- Tutorial Exercise An air-filled spherical capacitor is constructed with an inner-shell radius of 6.95 cm and an outer-shell radius of 14.5 cm. (a) Calculate the capacitance of the device. (b) What potential difference between the spheres results in a 4.00-μC charge on the capacitor? Part 1 of 4 - Conceptualize Since the separation between the inner and outer shells is much larger than a typical electronic capacitor with separation on the order of 0.1 mm and capacitance in the microfarad range, we expect the capacitance of this spherical configuration to be on the order of picofarads. The potential difference should be sufficiently low to avoid sparking through the air that separates the shells. Part 2 of 4 - Categorize We will calculate the capacitance from the equation for a spherical shell capacitor. We will then calculate the voltage found from Q = CAV.arrow_forwardI need help figuring out how to do part 2 with the information given in part 1 and putting it in to the simulation. ( trying to match the velocity graph from the paper onto the simulation to find the applied force graph) Using this simulation https://phet.colorado.edu/sims/cheerpj/forces-1d/latest/forces-1d.html?simulation=forces-1d.arrow_forwardI need help running the simulation to get the result needed.arrow_forward
- How can I remember this Formula: p = m × v where m is in kg and v in Meter per second in the best way?arrow_forwardHow can I remember the Formula for the impulsearrow_forwardA Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius ra and a coaxial cylindrical wire (the anode) of radius г (see figure below) with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 3.00 cm and that the wire along the axis has a diameter of 0.190 mm. The dielectric strength of the gas between the central wire and the cylinder is 1.15 × 106 V/m. Use the equation 2πrlE = 9in to calculate the maximum potential difference that can be applied between the wire and the cylinder before breakdown occurs in the gas. V Anode Cathodearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College


College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY