PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 92P
(a)
To determine
To Show:Mass of blackhole and Schwarzschild radius of black hole are related as:
(b)
To determine
To Calculate: The radius of black hole.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The radius Rh of a black hole is the radius of a mathematicalsphere, called the event horizon, that is centered on the blackhole. Information from events inside the event horizon cannotreach the outside world. According to Einstein’s general theory ofrelativity, Rh = 2GM/c2, where M is the mass of the black hole andc is the speed of light.Suppose that you wish to study a black hole near it, at a radialdistance of 50Rh. However, you do not want the difference in gravitationalacceleration between your feet and your head to exceed10 m/s2 when you are feet down (or head down) toward the blackhole. (a) As a multiple of our Sun’s mass MS, approximately what isthe limit to the mass of the black hole you can tolerate at the givenradial distance? (You need to estimate your height.) (b) Is the limitan upper limit (you can tolerate smaller masses) or a lower limit(you can tolerate larger masses)?
The Schwarzschild radius of a certain black hole is 30n
kilometers. The
mass of this black hole, in units of solar masses, Mo, is given by
M x aMo
What is the value of a, if n = 5 (give only an integer value).
The Small Magellanic Cloud is a dwarf galay orbiting the Milky Way at a distance of 50 kiloparsecs from its center, on a circular orbit. It is moving at a velocity.
rolative to the Milky Way, of 207 km/s. What is the mass of the Milky Way, in units of solar masses, inside the Cloud's orbit?
B
!!
245
If'a quasar emits 10^(10) times the Sun's luminosity, converting 10% of the mass of the material it eats into radiation, how many stars (ach of the Sun's mans)
must it consume per year?
Chapter 11 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A neutron star is a cold, collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun with a radius of 12.0 km. (a) What would be the weight of a 100-kg astronaut on standing on its surface? (b) What does this tell us about landing on a neutron star?arrow_forwardIf the Sun were to collapse into a black hole, the point of no return for an investigator would be approximately 3 km from the center singularity. Would the investingator be able to survive visiting even 300 km from the center? Answer this by finding the difference in the gravitatoinal attraction the black holes exerts on a 1.0-kg mass at the head and at the feet of the investigator.arrow_forwardCompute directly the gravitational force on a unit mass at a point exterior to a homogeneous sphere of matter.arrow_forward
- Two astronomical events are observed to occur at a time of 0.30 s apart and a distance separation of 2.0109m from each other. How fast must a spacecraft travel from the site of one event toward the other to make the events occur at the same time when measured in the frame of reference of the spacecraft?arrow_forward(a) What is the approximate force of gravity on a 70kg person due to the Andromeda galaxy, assuming its total mass is 1013 than of our Sun and acts like a single mass 2 Mly away? (b) What is the ratio of this force to the person's weight? Note that Andromeda is the closest large galaxy.arrow_forward(a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forward
- o What LineaN speed must an Earth Satellite have to be in ciNculay Oxbit at an altitude of 182 Km What is the peopod of Yevoluion.arrow_forwardAlso, Many astronomers believe that the massive object at the center of the Milky Way galaxy is a black hole. If so, what is its Schwarzschild radius Rs?arrow_forwardCompact objects and black-holes 2. Consider three compact objects in the form of: a white dwarf of 0.5Mo; a neutron star of 1.4Mo and a black-hole of 50 Mo. The radii of the white dwarf and neutron star are: Rwp 5.5 106 m and and RNS 10 Km. (a) Determine the radii of curvature Re = c2/g (where c is the speed of light and g is the local gravitational acceleration) around cach objcct specifying which radius you assume for the BH.arrow_forward
- Considering both special relativity and gravity, how much does Alice age if Julie ages 1 year?arrow_forward(c) Typically, black holes catch stass rather than people. Find the distance from the black hole at which a star of massmand rudiusrwill be disrupted by tidal forces, assuming that the two halves of the star are helil togegther hy gravity Ifse your mesult. to rherk whother a1M0s star will get disnupted before t plunges through the horizon of a108Mgblack hole. (If the disruption occurs inside the horizon, there will be no visible effect, since any enission produced during this event will not make it out of the black hole.)arrow_forwardWhat is the Schwarzschild radius (in km) of a 6Msun black hole? What fraction of the Earth's radius is this? What percent of the speed of light (2.998 x 108 m/s) is the escape velocity at the Schwarzschild radius? Part 1 of 3 The Schwarzschild radius of a black hole is given by: 2GM Rs = c2 so for the given mass, 2G(6)(Msun) Rs c2 where M. Sun = 1.99 x 1030 kg. Then convert this into kilometers using 1 km = 1,000 m. Rs kmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning