PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 3P
To determine
The season in the northern hemisphere during which the Earth attains its maximum and minimum orbital speed about the Sun.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
50. The perihelion of Halley's comet is 0.586 AU
and the aphelion is 17.8 AU. Given that its speed at
perihelion is 55 km/s, what is the speed at aphelion
(1AU=1.496×1011m)? (Hint: You may use either
conservation of energy or angular momentum, but
the latter is much easier.)
Neptune orbits the Sun with an orbital radius of 4.495 x 10^12 m. If the earth to sun distance 1A.U. = 1.5 x 10^11 m, a) Determine how many A.U.'s is Neptune's orbital radius (Round to the nearest tenth). b) Given the Sun's mass is 1.99 x10^30 kg, use Newton's modified version of Kepler's formula T^2 = (4pi^2/Gm(star)) x d^3 to find the period in seconds using
scientific notation. (Round to the nearest thousandth). C) Convert the period in part b) to years (Round to the nearest tenth)
Astronomical observations of our milky way galaxy indicate that it has a mass of about 8x1011 solar masses. A star orbiting near the galaxy's periphery is 5.6x104 light years from its center.
a.) What should be the orbital period (in years) of that star be?
b.) If its period is 6.4x107 years instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the center of some galaxies.
Chapter 11 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forward(a) One of the moons of Jupiter, named Io, has an orbital radius of 4.22 108 m and a period of 1.77 days. Assuming the orbit is circular, calculate the mass of Jupiter, (b) The largest moon of Jupiter, named Ganymede, has an orbital radius of 1.07 109 m and a period of 7.16 days. Calculate the mass of Jupiter from this data, (c) Are your results to parts (a) and (b) consistent? Explain.arrow_forwardComet Halley (Fig. P11.21) approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 1011 m is the mean EarthSun distance.) How far from the Sun will Halleys comet travel before it starts its return journey?arrow_forward
- Kepler’s third law says that the orbital period (in years) is proportional to the square root of the cube of the mean distance (in AU) from the Sun (Pa1.5) . For mean distances from 0.1 to 32 AU, calculate and plot a curve showing the expected Keplerian period. For each planet in our solar system, look up the mean distance from the Sun in AU and the orbital period in years and overplot these data on the theoretical Keplerian curve.arrow_forwardIo, a satellite of Jupiter, has an orbital period of 1.77 days and an orbital radius of 4.22 105 km. From these data, determine the mass of Jupiter.arrow_forwardMust engineers take Earth’s rotation into account when constructing very tall buildings at any location other than the equator or very near the poles?arrow_forward
- Pluto’s orbit around the Sun is highly elliptical compared to the planets in our Solar System. It has a perihelion distance of 29.7 AU and an aphelion distance of 49.5 AU. a) What is the semi-major axis of Pluto’s orbit, in AU? b) What is Pluto’s orbital period, in Earth years?arrow_forwardQuestion 18arrow_forwardPlease answer the question and subquestions entirely. This is one single question. According to the official guideline, I can ask two subquestions! Thank you! 1) A planet Y is moving in circular orbit around the Sun. If its distance from the Sun is four times the average distance of the Earth from the Sun, what is the Y’s period in Earth years? 3 8 16 32 64 a) Two masses are precisely 1 m apart from each other. The gravitational force each exerts on the other is exactly 1 N. If the masses are identical, what is each mass? 1.22 x 105 kg 1.34 x 1010 kg 2.50 x 105 kg 1.58 x 1010 kg b) What is the acceleration due to gravity on the surface of the planet Pluto if its mass is 1.2 x 10 22 kg and radius is 1.14 x 10 6 m? 9.8 m/s2 6.4 m/s2 0.62 m/s2 0.34 m/s2arrow_forward
- Find mass of star..arrow_forwardUniversal Gravitational Constant, G=6,6742867E-11 m3 kg / s2(Note that the exponent is negative)Radius of Earth, RE: 6,3781366E+06 mMass of Earth, ME: 5,9721426E+24 kg Two celestial bodies whose masses are m1 and m2 are revolving around their common center of mass and the distance between them is L. Assuming that they are both point masses, Find the angular speed, tangential speeds of the masses m1 and m2, and period of the motion. m1=7,27210x10^12kg m2=3,85280x10^11kg L=6,16500x10^8marrow_forward29. In a planetary system, p-h-y- s-i-c-x, located on the Milktea Way galaxy, seven iden- tical planets with mass m were observed which follows the configuration shown in the figure. Assuming that the given distances are from the center of each planet, what is the magnitude of the net gravitational force on planet y due to all the masses? a A. (3 - *) B. (3 + 4) Gm? 2Gm? a Gm² a2 D. 3Gm? a2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY