PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 57P

(a)

To determine

To Calculate:The orbital period of the space craft.

(a)

Expert Solution
Check Mark

Answer to Problem 57P

  7.3h

Explanation of Solution

Given data:

  G=6.67×1011 Nm2/kg2MEarth=5.98×1024kgREarth=6.37×106mh = 12.742×106 m

Mass of the spacecraft, m=100kg

Formula Used:

From Kepler’s third law, the square of the period T2 is directly proportional to the cube of the distance r .

  T2=4π2r3GME

Here, G is the universal gravitational constant and ME is the mass of the Earth.

Calculation:

The height of the spacecraft is

  h=2RE

Here, RE is the radius of the Earth.

Substitute 6.371×106m for RE

  h=2(6.371×106m)=12.742×106m

From Kepler’s third law, the square of the period T2 is directly proportional to the cube of the distance r .

  T2=4π2r3GME

Here, r=(RE+h) is the distance between the Earth and the space craft.

Substitute (RE+h) for r

  T2=4π2GME(RE+h)3

Thus, the expression for the period of the spacecraft’s orbit about the Earth is,

  T=4π2GME(RE+h)3

Substitute the values and solve:

  T=2(6.67×10-11N.m2/kg2)(5.98×1024kg)(6.371×106m+12.742×106m)3=2.63×104s(1h3600s)7.3h

Conclusion:

The orbital period of te space craft is 7.3h .

(b)

To determine

The kinetic energy of the spacecraft

(b)

Expert Solution
Check Mark

Answer to Problem 57P

  1.04GJ

Explanation of Solution

Given data:

  G=6.67×1011 Nm2/kg2MEarth=5.98×1024kgREarth=6.37×106mh = 12.742×106 m

Mass of the spacecraft, m=100kg

Formula used:

The kinetic energy of the spacecraft is

  K.E=12mv2

Here, v is the orbital speed of the space craft and m is the mass of the space craft.

The orbital velocity of the spacecraft is expressed as follows:

  v=GMERE+h

Calculation:

Substitute GMERE+h for v :

  K.E=12m(GMERE+h)2=GmME2(RE+h)

Substitute the values:

  K.E=(6.67×10-11N.m2/kg2)(100kg)(5.98×1024kg)2(6.371×106m+12.742×106m)

  =1.04×109J(1GJ109J)=1.04GJ

Conclusion:

The kinetic energy of the spacecraft is 1.04GJ.

(c)

To determine

The angular momentum of the spacecraft

(c)

Expert Solution
Check Mark

Answer to Problem 57P

  8.72×1012kgm2/s

Explanation of Solution

Given data:

  G=6.67×1011 Nm2/kg2MEarth=5.98×1024kgREarth=6.37×106mh = 12.742×106 m

Mass of the spacecraft, m=100kg

Formula used:

The moment of inertia of the space craft is I=m(RE+h)2 .

Calculation:

Substitute the values and solve:

  I=(100kg)(6.371×106m+12.742×106m)2=3.653×1016kg.m2

The angular momentum of the spacecraft in terms of kinetic energy is

  L=2(K.E)I

Substitute the values:

  L=2(1.04×109J)(3.653×1016kgm2)=8.72×1012kgm2/s

Conclusion:

The angular momentum of the spacecraft is 8.72×1012kgm2/s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A cylinder with a piston contains 0.153 mol of nitrogen at a pressure of 1.83×105 Pa and a temperature of 290 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. Part A Compute the temperature at the beginning of the adiabatic expansion. Express your answer in kelvins. ΕΠΙ ΑΣΦ T₁ = ? K Submit Request Answer Part B Compute the temperature at the end of the adiabatic expansion. Express your answer in kelvins. Π ΑΣΦ T₂ = Submit Request Answer Part C Compute the minimum pressure. Express your answer in pascals. ΕΠΙ ΑΣΦ P = Submit Request Answer ? ? K Pa
Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. Τ One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…
Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. T One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…

Chapter 11 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning