Achilles tendon. The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme activities, such as sprinting, it can be subjected to forces as high as 13 times a person’s weight. According to one set of experiments, the average area of the Achilles tendon is 78.1 mm 2 , its average length is 25 cm, and its average Young’s modulus is 1474 MPa. (a) How much tensile stress is required to stretch this muscle by 5.0% of its length? (b) If we model the tendon as a spring, what is its force constant? (c) If a 75 kg sprinter exerts a force of 13 times his weight on his Achilles tendon, by how much will it stretch?
Achilles tendon. The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme activities, such as sprinting, it can be subjected to forces as high as 13 times a person’s weight. According to one set of experiments, the average area of the Achilles tendon is 78.1 mm 2 , its average length is 25 cm, and its average Young’s modulus is 1474 MPa. (a) How much tensile stress is required to stretch this muscle by 5.0% of its length? (b) If we model the tendon as a spring, what is its force constant? (c) If a 75 kg sprinter exerts a force of 13 times his weight on his Achilles tendon, by how much will it stretch?
Achilles tendon. The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme activities, such as sprinting, it can be subjected to forces as high as 13 times a person’s weight. According to one set of experiments, the average area of the Achilles tendon is 78.1 mm2, its average length is 25 cm, and its average Young’s modulus is 1474 MPa. (a) How much tensile stress is required to stretch this muscle by 5.0% of its length? (b) If we model the tendon as a spring, what is its force constant? (c) If a 75 kg sprinter exerts a force of 13 times his weight on his Achilles tendon, by how much will it stretch?
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius
p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis
when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to
calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed
Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of
the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons.
Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons.
Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
Chapter 11 Solutions
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.