Concept explainers
A regular household system of a single-phase three-wire circuit allows the operation of both 120-V and 240-V, 60-Hz appliances. The household circuit is modeled as shown in Fig. 11.96. Calculate:
- (a) the currents I1, I2, and In
- (b) the total complex power supplied
- (c) the overall power factor of the circuit
(a)

Find the currents
Explanation of Solution
Given data:
Refer to Figure 11.96 in the textbook.
The frequency
The circuits performs at both the voltages
The inductance L is
Formula used:
Write the expression for reactance of an inductor
Here,
L is the inductance.
Calculation:
Refer to Figure 11.96 in the textbook.
Substitute
The modified Figure is shown in Figure 1.
In Figure 1, the current flowing through the lamp
The current flowing through the refrigerator is calculated by using Ohm’s law as follows.
Convert the equation from polar to rectangular form.
The current flowing through the kitchen range
In Figure, apply Kirchhoff’s current law in the circuit. Therefore, the current
Similarly, the current
Convert the equation from rectangular to polar form.
Similarly, the current
Convert the equation from rectangular to polar form.
Conclusion:
Thus, the currents
(b)

Find the total complex power in the circuit of Figure 11.96.
Answer to Problem 85P
The total complex power is
Explanation of Solution
Given data:
Refer to Figure 11.96 in the textbook.
From part (a),
Calculation:
Refer to Figure 1 shown in Part (a).
The complex power delivered by the voltage source 1 is,
Substitute
The complex power delivered by voltage source 2 is,
Substitute
Simply the equation as follows,
Convert the equation from polar to rectangular form.
The total complex power is,
Substitute
Conclusion:
Thus, the total complex power is
(c)

Find the total power factor of the circuit shown in Figure 11.96.
Answer to Problem 85P
The total power factor of the circuit is 0.9888 (lagging).
Explanation of Solution
Given data:
Refer to Figure 11.96 in the textbook.
Formula used:
Write the expression for complex power.
Here,
P is the real power, and
Q is the reactive power.
Write the expression for power factor.
Calculation:
On comparing equation (2) and (3), the real power is,
From equation (2), the apparent power S is,
Substitute
Since,
Conclusion:
Thus, the total power factor of the circuit is 0.9888 (lagging).
Want to see more full solutions like this?
Chapter 11 Solutions
EE 98: Fundamentals of Electrical Circuits - With Connect Access
- A lighting load of 600 kW and a motor load of 707 kW at 0.707 p.f lagging are supplied by two alternators running in parallel. One machine supplies 900 kW at 0.9 p.f lagging. Find the load sharing and p.f of second machine?arrow_forwardPlease draw out the circuitsarrow_forwardQ2 but when you get to part 3, can you please draw it outarrow_forward
- please solve manually. I need the drawing and the values too. Thank you!arrow_forwardTwo alternators, Y-connected 6.6 kV supply a load of 3000 kW at 0.8 p.f lagging. The synchronous mpedance of first alternator is (0.5+j10) Q/ph and second alternator is (0.4+j12) /ph. First alternator delivers 150 amp at 0.875 lag p.f. The two alterators are shared load equally. Determine the current, p.f., induced e.m.f, load angel, and maximum developed power of each alternator?arrow_forwardA domestic load of 2300 kW at 0.88 p.f lagging and a motors load of 3400 kW at 0.85 p.f lagging are supplied by two alternators operating in parallel. If one alternator is delivering a load of 3300 kW at 0.9 p.f lagging, what will be the output power and p.f of the other alternator?arrow_forward
- Determine the value of Rr that necessary for the circuit in Fig.(2) to operate as an oscillator and then determine the frequency of oscillation. 0.001 F 0.001 F 0.001 F R₁ • 10 ΚΩ R₁ 10 k R • 10 ΚΩarrow_forward(a) For the circuit shown in Figure Q3(a) (RFC and Cc are forbias) (i) (ii) Draw the AC small signal equivalent circuit of the oscillator. From this equivalent circuit derive an equation for fo and the gain condition for the oscillations to start. VDD www RG eee RFC H Cc 北 5 C₁ L 000 C₂ Voarrow_forwardPlease solve this question step by step handwritten solution and do not use chat gpt or any ai toolsfor part ii) you may need to use nodal analysisarrow_forward
- 12.1. Find the steady-state response vo (t) for the network. 00000- 1Ω ww 12 cos(t) V + www 202 1 H 202 1 F + 1Ω νο -arrow_forwardA Three-phase, 12 pole, Y-connected alternator has 108 slots and 14 conductors per slot. The windings are (5/6 th) pitched. The flux per pole is 57 mWb distributed sinusoidally over the pole. If the machine runs at 500 r.p.m., determine the following: (a) The frequency of the generated e.m.f., (b) The distribution factor, (c) The pitch factor, and (d) The phase and line values of the generated e.m.f.?arrow_forwardTwo 3-ph, 6.6 kV, Y-connected, alternators supply a load of 3000 kW at 0.8 p.f. lagging. The synchronou impedance per phase of machine A is (0.5+110) and that of machine B is (0.4 +J12) . The excitation of machine A adjusted so that it delivers 150 A. The load is shared equally between the machines. Determine the armature curre p.f., induced e.m.f., and load angle of each machine?arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





