EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 8220101425812
Author: DECOSTE
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 84E
An aqueous solution of an unknown salt of ruthenium iselectrolyzed by a current of 2.50 A passing for 50.0 min.If 2.618 g Ru is produced at the cathode, what is thecharge on the ruthenium ions in solution?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 11 - Prob. 1DQCh. 11 - Prob. 2DQCh. 11 - You want to “plate out” nickel metal from a nickel...Ch. 11 - A copper penny can be dissolved in nitric acid but...Ch. 11 - Sketch a cell that forms iron metal from iron(II)...Ch. 11 - Which of the following is the best reducing agent:...Ch. 11 - You are told that metal A is a better reducing...Ch. 11 - Explain the following relationships: G and w, cell...Ch. 11 - Explain why cell potentials are not multiplied by...Ch. 11 - What is the difference between andWhen is equal to...
Ch. 11 - Prob. 11DQCh. 11 - Look up the reduction potential for Fe3+toFe2+ ....Ch. 11 - Prob. 13DQCh. 11 - Is the following statement true or false?...Ch. 11 - What is electrochemistry? What are redox...Ch. 11 - When magnesium metal is added to a beaker of...Ch. 11 - Prob. 17ECh. 11 - How can you construct a galvanic cell from two...Ch. 11 - Prob. 19ECh. 11 - Prob. 20ECh. 11 - Prob. 21ECh. 11 - Consider the following galvanic cells: For each...Ch. 11 - Prob. 23ECh. 11 - Prob. 24ECh. 11 - Answer the following questions using data from...Ch. 11 - Prob. 26ECh. 11 - Using data from Table 11.1, place the following in...Ch. 11 - Prob. 28ECh. 11 - Use the table of standard reduction potentials...Ch. 11 - Use the table of standard reduction potentials...Ch. 11 - Prob. 31ECh. 11 - A patent attorney has asked for your advice...Ch. 11 - The free energy change for a reaction G is an...Ch. 11 - The equation also can be applied to...Ch. 11 - Prob. 35ECh. 11 - Glucose is the major fuel for most living cells....Ch. 11 - Direct methanol fuel cells (DMFCs) have shown...Ch. 11 - The overall reaction and standard cell potential...Ch. 11 - Calculate the maximum amount of work that can...Ch. 11 - Prob. 40ECh. 11 - Prob. 41ECh. 11 - Chlorine dioxide (ClO2) , which is produced by...Ch. 11 - The amount of manganese in steel is determined...Ch. 11 - The overall reaction and equilibrium constant...Ch. 11 - Prob. 45ECh. 11 - Calculate for the reaction...Ch. 11 - A disproportionation reaction involves a substance...Ch. 11 - Calculate for the following half-reaction:...Ch. 11 - For the following half-reaction AlF63+3eAl+6F...Ch. 11 - Prob. 50ECh. 11 - The solubility product for CuI(s) is 1.11012....Ch. 11 - Explain the following statement: determines...Ch. 11 - Calculate the pH of the cathode compartment for...Ch. 11 - Consider the galvanic cell based on the...Ch. 11 - Prob. 55ECh. 11 - Consider the following galvanic cell at 25°C:...Ch. 11 - The black silver sulfide discoloration of...Ch. 11 - Consider the cell described below:...Ch. 11 - Consider the cell described below:...Ch. 11 - Prob. 60ECh. 11 - Prob. 61ECh. 11 - Prob. 62ECh. 11 - What are concentration cells? What is in a...Ch. 11 - A silver concentration cell is set up at 25°C as...Ch. 11 - Consider the concentration cell shown below....Ch. 11 - Prob. 66ECh. 11 - Prob. 67ECh. 11 - An electrochemical cell consists of a nickel metal...Ch. 11 - You have a concentration cell in which the cathode...Ch. 11 - Consider a galvanic cell at standard conditions...Ch. 11 - An electrochemical cell consists of a zinc metal...Ch. 11 - How long will it take to plate out each of the...Ch. 11 - What mass of each of the following substances can...Ch. 11 - It took 2.30 min with a current of 2.00 A to plate...Ch. 11 - The electrolysis of BiO+ produces pure bismuth....Ch. 11 - A single HallHeroult cell (as shown in Fig. 11.22)...Ch. 11 - A factory wants to produce 1.00103 kg barium...Ch. 11 - Why is the electrolysis of molten salts much...Ch. 11 - What reaction will take place at the cathode and...Ch. 11 - What reaction will take place at the cathode and...Ch. 11 - Prob. 81ECh. 11 - a. In the electrolysis of an aqueous solution of...Ch. 11 - A solution at 25°C contains 1.0 M...Ch. 11 - An aqueous solution of an unknown salt of...Ch. 11 - Consider the following half-reactions: A...Ch. 11 - An unknown metal M is electrolyzed. It took 74.1 s...Ch. 11 - Electrolysis of an alkaline earth metal chloride...Ch. 11 - Prob. 88ECh. 11 - What volume of F2 gas, at 25°C and 1.00 atm, is...Ch. 11 - Prob. 90ECh. 11 - In the electrolysis of a sodium chloride solution,...Ch. 11 - What volumes of H2(g)andO2(g) at STP are...Ch. 11 - Copper can be plated onto a spoon by placing the...Ch. 11 - Prob. 94AECh. 11 - Prob. 95AECh. 11 - Prob. 96AECh. 11 - Prob. 97AECh. 11 - Prob. 98AECh. 11 - Prob. 99AECh. 11 - Prob. 100AECh. 11 - Prob. 101AECh. 11 - Prob. 102AECh. 11 - Prob. 103AECh. 11 - Prob. 104AECh. 11 - In 1973 the wreckage of the Civil War ironclad...Ch. 11 - A standard galvanic cell is constructed so that...Ch. 11 - Prob. 107AECh. 11 - Prob. 108AECh. 11 - Prob. 109AECh. 11 - Prob. 110AECh. 11 - Prob. 111AECh. 11 - Prob. 112AECh. 11 - Prob. 113AECh. 11 - Consider a galvanic cell based on the following...Ch. 11 - Prob. 115AECh. 11 - Prob. 116AECh. 11 - Prob. 117AECh. 11 - Prob. 118AECh. 11 - Prob. 119CPCh. 11 - Prob. 120CPCh. 11 - A zinccopper battery is constructed as follows:...Ch. 11 - Prob. 122CPCh. 11 - Prob. 123CPCh. 11 - Prob. 124CPCh. 11 - Prob. 125CPCh. 11 - Prob. 126CPCh. 11 - Prob. 127CPCh. 11 - Prob. 128CPCh. 11 - Prob. 129CPCh. 11 - Prob. 130CPCh. 11 - Prob. 131CPCh. 11 - Prob. 132MPCh. 11 - Prob. 133MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardAn electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardCalcium metal can be obtained by the direct electrolysis of molten CaCl2, at a voltage of 3.2 V. (a) How many joules of electrical energy are required to obtain 12.0 1b of calcium? (b) What is the cost of the electrical energy obtained in (a) if electrical energy is sold at the rate of nine cents per kilowatt hour?arrow_forward
- Chlorine, Cl2, is produced commercially by the electrolysis of aqueous sodium chloride. The anode reaction is 2Cl(aq)Cl2(g)+2e How long will it take to produce 2.00 kg of chlorine if the current is 5.00 102 A?arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- A galvanic cell is constructed in which the overall reactionis Cr2O72(aq)+14H2O+(aq)+6I(aq)2Cr3+(aq)+3I2(s)+21H2O(l) Calculate E for this cell. At pH 0, with [Cr2O72]=1.5M and [I]=0.40M, the cell potential is found to equal 0.87 V. Calculatethe concentration of Cr3+(aq) in the cell.arrow_forwardAn electrode is prepared by dipping a silver strip into a solution saturated with silver thiocyanate, AgSCN, and containing 0.10 M SCN . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.45 V. What is the solubility product of silver thiocyanate?arrow_forwardConsider the following cell reaction at 25C. 2Cr(s)+3Fe2+(aq)2Cr3+(aq)+3Fe(s) Calculate the standard cell potential of this cell from the standard electrode potentials, and from this obtain G for the cell reaction. Use data in Appendix C to calculate H; note that Cr(H2O)63+(aq) equals Cr3+(aq). Use these values of H and G to obtain S for the cell reaction.arrow_forward
- A 1.0-L sample of 1.0 M HCl solution has a 10.0 A current applied for 45 minutes. What is the pH of the solution after the electricity has been turned off?arrow_forwardConsider a galvanic cell for which the anode reaction is 3 Pb(s)Pb2+(1.0102M)+2e and the cathode reaction is VO2+(0.10M)+2H3O+(0.10M)+eV3+(1.0105M)+3H2O(l) The measured cell potential is 0.640 V. Calculate E for the VO2+V3+ half-reaction, usingE(Pb2+Pb) from Appendix E. Calculate the equilibrium constant (K) at 25°C for thereaction Pb(s)+2VO2+(aq)+4H3O+(aq)Pb2+(aq)+2V3+(aq)+6H2O(l)arrow_forwardConsider the following galvanic cell at 25C: Pt|Cr2+(0.30M),Cr3+(2.0M)||Co2+(0.20M)|Co The overall reaction and equilibrium constant value are 2Cr2+(aq)+Co2+(aq)2Cr3+(aq)+Co(s)K=2.79107 Calculate the cell potential, for this galvanic cell and G for the cell reaction at these conditions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY