The Postage function. The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com .) If x represents the weight of a large envelope, in ounces, then p ( x ) is the cost of mailing it, where p ( x ) = $ 0.98 , if 0 < x ≤ 1 , p ( x ) = $ 1.19 , if 1 < x ≤ 2 , p ( x ) = $ 1.40 , if 2 < x ≤ 3 , And so on, up through 13 ounce. The graph of p is show below. Using the graph of the postage function, find each of the following limit, if it exists. lim x → 3 p ( x )
The Postage function. The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com .) If x represents the weight of a large envelope, in ounces, then p ( x ) is the cost of mailing it, where p ( x ) = $ 0.98 , if 0 < x ≤ 1 , p ( x ) = $ 1.19 , if 1 < x ≤ 2 , p ( x ) = $ 1.40 , if 2 < x ≤ 3 , And so on, up through 13 ounce. The graph of p is show below. Using the graph of the postage function, find each of the following limit, if it exists. lim x → 3 p ( x )
Solution Summary: The author explains that the cost of sending a large envelope via U.S. first-class mail in 2014 was 0.98 for the first ounce and
The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com.) If x represents the weight of a large envelope, in ounces, then
p
(
x
)
is the cost of mailing it, where
p
(
x
)
=
$
0.98
,
if
0
<
x
≤
1
,
p
(
x
)
=
$
1.19
,
if
1
<
x
≤
2
,
p
(
x
)
=
$
1.40
,
if
2
<
x
≤
3
,
And so on, up through 13 ounce. The graph of p is show below.
Using the graph of the postage function, find each of the following limit, if it exists.
Give an example of a nominal variable for people in recovery for substance abuse
A company is planning to manufacture mountain bikes. Fixed monthly cost will be $300,000 and it will cost $200 to produce each bicycle.
A. Write the cost function, C, of producing x mountain bikes.
C(x) = per month
B. Write the average cost function, C, of producing x mountain bikes.
C(x) = per month
%3D
C. How many mountain bikes must be produced each month for the company to have an average cost of $300 per bike?
must be produced each month.
Enter your answer in each of the answer boxes.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.