a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 3 2 x 2
a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 3 2 x 2
Solution Summary: The author explains how to graph the function f(x)=32.
2. We want to find the inverse of f(x) = (x+3)²
a. On the graph at right, sketch f(x).
(Hint: use what you know about
transformations!) (2 points)
b. What domain should we choose to
get only the part of f (x) that is one-
to-one and non-decreasing? Give
your answer in inequality notation. (2
points)
-
c. Now use algebra to find f¯¹ (x). (2
points)
-4-
3-
2
1
-4
-3
-2
-1
0
1
-1-
-2-
--3-
-4
-N-
2
3
4
1. Suppose f(x) =
2
4
==
x+3
and g(x) = ½-½. Find and fully simplify ƒ(g(x)). Be sure to show all
x
your work, write neatly so your work is easy to follow, and connect your expressions
with equals signs. (4 points)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY