The Postage function. The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com .) If x represents the weight of a large envelope, in ounces, then p ( x ) is the cost of mailing it, where p ( x ) = $ 0.98 , if 0 < x ≤ 1 , p ( x ) = $ 1.19 , if 1 < x ≤ 2 , p ( x ) = $ 1.40 , if 2 < x ≤ 3 , And so on, up through 13 ounce. The graph of p is show below. Using the graph of the postage function, find each of the following limit, if it exists. lim x → 1 − p ( x ) , lim x → 1 + p ( x ) , lim x → 1 p ( x )
The Postage function. The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com .) If x represents the weight of a large envelope, in ounces, then p ( x ) is the cost of mailing it, where p ( x ) = $ 0.98 , if 0 < x ≤ 1 , p ( x ) = $ 1.19 , if 1 < x ≤ 2 , p ( x ) = $ 1.40 , if 2 < x ≤ 3 , And so on, up through 13 ounce. The graph of p is show below. Using the graph of the postage function, find each of the following limit, if it exists. lim x → 1 − p ( x ) , lim x → 1 + p ( x ) , lim x → 1 p ( x )
Solution Summary: The author calculates the cost of sending a large envelope via U.S. first-class mail in 2014, which is 0.98 for the first ounce and
The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com.) If x represents the weight of a large envelope, in ounces, then
p
(
x
)
is the cost of mailing it, where
p
(
x
)
=
$
0.98
,
if
0
<
x
≤
1
,
p
(
x
)
=
$
1.19
,
if
1
<
x
≤
2
,
p
(
x
)
=
$
1.40
,
if
2
<
x
≤
3
,
And so on, up through 13 ounce. The graph of p is show below.
Using the graph of the postage function, find each of the following limit, if it exists.
lim
x
→
1
−
p
(
x
)
,
lim
x
→
1
+
p
(
x
)
,
lim
x
→
1
p
(
x
)
2. We want to find the inverse of f(x) = (x+3)²
a. On the graph at right, sketch f(x).
(Hint: use what you know about
transformations!) (2 points)
b. What domain should we choose to
get only the part of f (x) that is one-
to-one and non-decreasing? Give
your answer in inequality notation. (2
points)
-
c. Now use algebra to find f¯¹ (x). (2
points)
-4-
3-
2
1
-4
-3
-2
-1
0
1
-1-
-2-
--3-
-4
-N-
2
3
4
1. Suppose f(x) =
2
4
==
x+3
and g(x) = ½-½. Find and fully simplify ƒ(g(x)). Be sure to show all
x
your work, write neatly so your work is easy to follow, and connect your expressions
with equals signs. (4 points)
College Algebra with Modeling & Visualization (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.