The Postage function. The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com .) If x represents the weight of a large envelope, in ounces, then p ( x ) is the cost of mailing it, where p ( x ) = $ 0.98 , if 0 < x ≤ 1 , p ( x ) = $ 1.19 , if 1 < x ≤ 2 , p ( x ) = $ 1.40 , if 2 < x ≤ 3 , And so on, up through 13 ounce. The graph of p is show below. Using the graph of the postage function, find each of the following limit, if it exists. lim x → 1 − p ( x ) , lim x → 1 + p ( x ) , lim x → 1 p ( x )
The Postage function. The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com .) If x represents the weight of a large envelope, in ounces, then p ( x ) is the cost of mailing it, where p ( x ) = $ 0.98 , if 0 < x ≤ 1 , p ( x ) = $ 1.19 , if 1 < x ≤ 2 , p ( x ) = $ 1.40 , if 2 < x ≤ 3 , And so on, up through 13 ounce. The graph of p is show below. Using the graph of the postage function, find each of the following limit, if it exists. lim x → 1 − p ( x ) , lim x → 1 + p ( x ) , lim x → 1 p ( x )
Solution Summary: The author calculates the cost of sending a large envelope via U.S. first-class mail in 2014, which is 0.98 for the first ounce and
The cost of sending a large envelope via U.S. first-class mail in 2014 was $0.98 for the first ounce and $0.21 for each additional ounce (or fraction thereof). (Source; www.usps.com.) If x represents the weight of a large envelope, in ounces, then
p
(
x
)
is the cost of mailing it, where
p
(
x
)
=
$
0.98
,
if
0
<
x
≤
1
,
p
(
x
)
=
$
1.19
,
if
1
<
x
≤
2
,
p
(
x
)
=
$
1.40
,
if
2
<
x
≤
3
,
And so on, up through 13 ounce. The graph of p is show below.
Using the graph of the postage function, find each of the following limit, if it exists.
lim
x
→
1
−
p
(
x
)
,
lim
x
→
1
+
p
(
x
)
,
lim
x
→
1
p
(
x
)
Consider the following system of equations, Ax=b :
x+2y+3z - w = 2
2x4z2w = 3
-x+6y+17z7w = 0
-9x-2y+13z7w = -14
a. Find the solution to the system. Write it as a parametric equation. You can use a
computer to do the row reduction.
b. What is a geometric description of the solution? Explain how you know.
c. Write the solution in vector form?
d. What is the solution to the homogeneous system, Ax=0?
2. Find a matrix A with the following qualities
a. A is 3 x 3.
b. The matrix A is not lower triangular and is not upper triangular.
c. At least one value in each row is not a 1, 2,-1, -2, or 0
d. A is invertible.
College Algebra with Modeling & Visualization (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.