Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 75CP
What is stall? What causes an airfoil to stall? Why are commercial aircraft not allowed to fly at conditions near stall?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An ideal gas, occupying a volume of 0.02 m3 , has a temperature of 25 0C and is at 1.2 bar. The gas is compressed reversibly and adiabatically to a final pressure of 8 bar. Assuming the gas has an adiabatic index of γ = 1.4, calculate (a) the final temperature, (b) the final volume, (c) the work performed during the compression and (d) the heat transferred.
attached is a past paper question in which we werent given the solution. a solution with clear steps and justification would be massively appreciated thankyou.
in this scenario, when it comes to matrix iterations it states this system is assumed out of phase. why is this?
Chapter 11 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 11 - Which bicyclist is more likely to go faster: one...Ch. 11 - Consider laminar flow over a flat plate. How does...Ch. 11 - Define the frontal area of a body subjected to...Ch. 11 - Define the planform area of a body subjected to...Ch. 11 - Prob. 5CPCh. 11 - Prob. 6CPCh. 11 - What is the difference between streamlined and...Ch. 11 - Prob. 8CPCh. 11 - What is drag? What causes it? Why do we usually...Ch. 11 - Prob. 10CP
Ch. 11 - During flow over a given body, the drag force, the...Ch. 11 - During flow over a given slender body such as a...Ch. 11 - What is terminal velocity? How is it determined?Ch. 11 - What is the difference between skin friction drag...Ch. 11 - What is the effect of surface roughness on the...Ch. 11 - Prob. 16CPCh. 11 - What is flow separation? What causes it? What is...Ch. 11 - Prob. 18CPCh. 11 - In general, how does the drag coefficient vary...Ch. 11 - Fairings are attached to the front and back of a...Ch. 11 - Prob. 21PCh. 11 - The resultant of the pressure and wall shear...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - A circular sign has a diameter of 50 cm and is...Ch. 11 - Prob. 28EPCh. 11 - Prob. 29PCh. 11 - At highway speeds, about half of the power...Ch. 11 - A submarine can be treated as an ellipsoid with a...Ch. 11 - Prob. 32EPCh. 11 - Prob. 33PCh. 11 - A 70-kg bicyclist is riding her 1 5-kg bicycle...Ch. 11 - A wind turbine with two or four hollow...Ch. 11 - Prob. 37EPCh. 11 - During steady motion of a vehicle on a level road,...Ch. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - The drag coefficient of a vehicle increases when...Ch. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - How is the average friction coefficient determined...Ch. 11 - What fluid property is responsible for the...Ch. 11 - What does the friction coefficient represent in...Ch. 11 - Prob. 49PCh. 11 - The local atmospheric pressure in Denver, Colorado...Ch. 11 - The top surface of the passenger car of a train...Ch. 11 - The forming section of a plastics plant puts out a...Ch. 11 - Prob. 54EPCh. 11 - Prob. 55EPCh. 11 - Air at 25C and 1 atm is flowing over a long flat...Ch. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Why is flow separation in flow over cylinders...Ch. 11 - Prob. 62CPCh. 11 - Prob. 63CPCh. 11 - Prob. 64PCh. 11 - A 1ong 5-cm-diameter steam pipe passes through...Ch. 11 - Consider 0.8-cm-diameter hail that is falling...Ch. 11 - Prob. 67EPCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71EPCh. 11 - One of the popular demonstrations in science...Ch. 11 - Prob. 73CPCh. 11 - Air is flowing past a symmetrical airfoil at an...Ch. 11 - What is stall? What causes an airfoil to stall?...Ch. 11 - Prob. 76CPCh. 11 - Air is flowing past a symmetrical airfoil at zero...Ch. 11 - Both the lift and the drag of an airfoil increase...Ch. 11 - Prob. 79CPCh. 11 - Prob. 80CPCh. 11 - Prob. 81CPCh. 11 - Prob. 82CPCh. 11 - Prob. 83CPCh. 11 - How do flaps affect the lift and the drag of...Ch. 11 - A small aircraft has a wing area of 35 m2 a lift...Ch. 11 - Consider an aircraft that takes off at 260 km/h...Ch. 11 - Prob. 87PCh. 11 - Prob. 88EPCh. 11 - Prob. 89PCh. 11 - A tennis ball with a mass of 57 and a diameter of...Ch. 11 - Prob. 92EPCh. 11 - Prob. 93PCh. 11 - Consider a light plane that has a total weight of...Ch. 11 - A small airplane has a total mass of 1800 kg and a...Ch. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - A 2-zn-high, 4-zn-wide rectangular advertisement...Ch. 11 - 11-97 A plastic boat whose bottom surface can be...Ch. 11 - Prob. 102PCh. 11 - Prob. 103EPCh. 11 - A commercial airplane has a total mass of 150.000...Ch. 11 - Prob. 105PCh. 11 - A paratrooper and his 8-m-diameter parachute weigh...Ch. 11 - Prob. 107PCh. 11 - Prob. 108PCh. 11 - Prob. 110PCh. 11 - Prob. 112PCh. 11 - Prob. 113PCh. 11 - Prob. 114PCh. 11 - Prob. 117PCh. 11 - Prob. 118PCh. 11 - Prob. 119PCh. 11 - Prob. 120PCh. 11 - Prob. 121PCh. 11 - The region of flow trailing the body where the...Ch. 11 - Prob. 123PCh. 11 - Prob. 124PCh. 11 - Prob. 125PCh. 11 - Prob. 126PCh. 11 - Prob. 127PCh. 11 - Prob. 128PCh. 11 - An airplane has a total mass of 3.000kg and a wing...Ch. 11 - Prob. 130PCh. 11 - Write a report on the history of the reduction of...Ch. 11 - Write a report oil the flips used at the leading...Ch. 11 - Large commercial airplanes cruise at high...Ch. 11 - Many drivers turn off their air conditioners and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1. A curved beam of a circular cross section of diameter "d" is fixed at one end and subjected to a concentrated load P at the free end (Fig. 1). Calculate stresses at points A and C. Given: P = 800 N, d = 30 mm, a 25 mm, and b = 15 mm. Fig.1 P b B (10 Marks)arrow_forwardYou are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (p = 0.001 kg m-1 s-1) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be y = +h I 2h = 1 cm x1 y = -h u(y) 1 dP 2μ dx -y² + Ay + B moving plate stationary plate U 2 I2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page.arrow_forwardQuestion 1 You are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be 1 dP u(y) = 2μ dx -y² + Ay + B y= +h Ꮖ 2h=1 cm 1 x1 y = −h moving plate stationary plate 2 X2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: U U 1 dP A =…arrow_forward
- Question 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) ← intake normal shock 472 m/s A B (b) 50 m/s H 472 m/s B engine altitude: 14,000 m exhaust nozzle E F exit to atmosphere diameter: DE = 0.30 m E F diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed…arrow_forwardيكا - put 96** I need a detailed drawing with explanation or in wake, and the top edge of im below the free surface of the water. Determine the hydrothed if hydrostatic on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. =--20125 7357 750 X 2.01arrow_forwardYou are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be U y = +h У 2h = 1 cm 1 x1 y=-h u(y) = 1 dP 2μ dx -y² + Ay + B moving plate - U stationary plate 2 I2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: A = U 2h U 1 dP…arrow_forward
- Question 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) normal shock 472 m/s A B (b) intake engine altitude: 14,000 m D exhaust nozzle→ exit to atmosphere 472 m/s 50 m/s B diameter: DE = 0.30 m EX diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. F a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed of…arrow_forwardgiven below: A rectangular wing with wing twist yields the spanwise circulation distribution kbV1 roy) = kbv. (2) where k is a constant, b is the span length and V. is the free-stream velocity. The wing has an aspect ratio of 4. For all wing sections, the lift curve slope (ag) is 2 and the zero-lift angle of attack (a=0) is 0. a. Derive expressions for the downwash (w) and induced angle of attack a distributions along the span. b. Derive an expression for the induced drag coefficient. c. Calculate the span efficiency factor. d. Calculate the value of k if the wing has a washout and the difference between the geometric angles of attack of the root (y = 0) and the tip (y = tb/2) is: a(y = 0) a(y = ±b/2) = /18 Hint: Use the coordinate transformation y = cos (0)arrow_forward۳/۱ العنوان O не شكا +91x PU + 96852 A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of Deine the hadrostatic force on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. = -20125 750 x2.01arrow_forward
- Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forwardQ1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 marrow_forwardI need handwritten solution with sketches for eacharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License