College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 74PE
If the pressure in the esophagus is -2.00 mm Hg while that in the stomach is +20.0 mm Hg, to what height could stomach fluid rise in the esophagus, assuming a density of 1.10 g/mL? (This movement will not occur if the muscle closing the lower end of the esophagus is working properly.)
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Two long, straight wires are separated by distance, d = 22.0 cm. The wires carry currents of I1 = 7.50 A and I2 = 5.50 A
in opposite directions, as shown in the figure. Find the magnitude of the net magnetic field at point (B). Let r₁ = 12.0 cm,
r2 = 7.00 cm, and r3 = 13.0 cm.
Solve in T.
12
d
A
√3
I tried to solve this question, and I had an "expert" answer it and they got it wrong. I cannot answer this question
Eddie Hall is the current world record holder in the deadlift, a powerlifting maneuver in which a weighted barbell is lifted from the ground to waist height, then dropped. The figure below
shows a side view of the initial and final positions of the deadlift.
a
0 = 55.0°
Fift
h22.5 cm
i
hy = 88.0 cm
b
i
Chapter 11 Solutions
College Physics
Ch. 11 - What physical characteristic distinguishes a fluid...Ch. 11 - Which of the following substances are fluids at...Ch. 11 - Why are gases easier to compress than liquids and...Ch. 11 - How do gases differ from liquids?Ch. 11 - Approximately how does the density of air vary...Ch. 11 - Give an example in which density is used to...Ch. 11 - Prob. 7CQCh. 11 - How is pressure related to the sharpness of a...Ch. 11 - Why does a dull hypodermic needle hurt more than a...Ch. 11 - The outward force on one end of an air tank was...
Ch. 11 - Why is force exerted by static fluids always...Ch. 11 - In a remote location near the North Pole, an...Ch. 11 - How do jogging on soft ground and wearing padded...Ch. 11 - Toe dancing (as in ballet) is much harder on toes...Ch. 11 - How do you convert pressure units like millimeters...Ch. 11 - Atmospheric pressure exerts a large force (equal...Ch. 11 - Why does atmospheric pressure decrease more...Ch. 11 - What are two reasons why mercury rather than water...Ch. 11 - Prob. 19CQCh. 11 - Why is it difficult to swim under water in the...Ch. 11 - Is there a net force on a due to atmospheric...Ch. 11 - Does atmospheric pressure add to the gas pressure...Ch. 11 - You can break a strong wine bottle by pounding a...Ch. 11 - Suppose the master cylinder in a hydraulic system...Ch. 11 - Explain why the fluid reaches equal levels on...Ch. 11 - Prob. 26CQCh. 11 - Considering the magnitude of typical arterial...Ch. 11 - More force is required to pull the plug in a full...Ch. 11 - Do fluids exert buoyant forces in a "weightless"...Ch. 11 - Will the same ship float higher in salt water than...Ch. 11 - Marbles dropped into a partially filled bathtub...Ch. 11 - The density of oil is less than that of water, yet...Ch. 11 - Is surface tension due to cohesive or adhesive...Ch. 11 - Is capillary action due to cohesive or adhesive...Ch. 11 - Birds such as ducks, geese, and swans have greater...Ch. 11 - Water beads up on an oily sunbather, but not on...Ch. 11 - Could capillary action be used to move fluids in a...Ch. 11 - What effect does capillary action have on the...Ch. 11 - Pressure between the inside chest wall and the...Ch. 11 - Gold is sold by the troy ounce (31.103 g). What is...Ch. 11 - Mercury is commonly supplied in flasks containing...Ch. 11 - (a) What is the mass of a deep breath of air...Ch. 11 - A straightforward method of finding the density of...Ch. 11 - Suppose you have a coffee mug with a circular...Ch. 11 - (a) A rectangular gasoline tank can hold 50.0 kg...Ch. 11 - A trash compactor can reduce the volume of its...Ch. 11 - A 2.50-kg steel gasoline can holds 20.0 L of...Ch. 11 - What is the density of 18.0-karat gold that is a...Ch. 11 - There is relatively little empty space between...Ch. 11 - As a woman walks, her entire weight is momentarily...Ch. 11 - The pressure exerted by a phonograph needle on a...Ch. 11 - Nail tips exert tremendous pressures when they are...Ch. 11 - What depth of mercury creates a pressure of 1.00...Ch. 11 - The greatest ocean depths on the Earth are found...Ch. 11 - Verify that the SI unit of hpg is N/m2.Ch. 11 - Water towers store water above the level of...Ch. 11 - The aqueous humor in a person's eye is exerting a...Ch. 11 - How much force is exerted on one side of an 8.50...Ch. 11 - What pressure is exerted on the bottom of a...Ch. 11 - Calculate the average pressure exerted on the palm...Ch. 11 - The left side of the heart creates a pressure of...Ch. 11 - Prob. 23PECh. 11 - How much pressure is transmitted in the hydraulic...Ch. 11 - What force must be exerted on the master cylinder...Ch. 11 - A crass host pours the remnants of several bottles...Ch. 11 - A certain hydraulic system is designed to exert a...Ch. 11 - (a) Verify that work input equals work output for...Ch. 11 - Prob. 29PECh. 11 - (a) Convert normal blood pressure readings of 120...Ch. 11 - How tall must a water-filled manometer be to...Ch. 11 - Pressure cookers have been around for more than...Ch. 11 - Suppose you measure a standing person's blood...Ch. 11 - A submarine is stranded on the bottom of the ocean...Ch. 11 - Assuming bicycle tires are perfectly flexible and...Ch. 11 - What fraction of ice is submerged when it floats...Ch. 11 - Logs sometimes float vertically in a lake because...Ch. 11 - Find the density of a fluid in which a hydrometer...Ch. 11 - If your body has a density of 995 kg/m3, what...Ch. 11 - Bird bones have air pockets in them to reduce...Ch. 11 - A rock with a mass of 540 g in air is found to...Ch. 11 - Archimedes' principle can be used to calculate the...Ch. 11 - In an immersion measurement of a woman's density,...Ch. 11 - Some fish have a density slightly less than that...Ch. 11 - (a) Calculate the buoyant force on a 2.00-L helium...Ch. 11 - (a) What is the density of a woman who floats in...Ch. 11 - A certain man has a mass of 80 kg and a density of...Ch. 11 - A simple compass can be made by placing a small...Ch. 11 - What fraction of an iron anchor's weight will be...Ch. 11 - Scurrilous con artists have been known to...Ch. 11 - A twin-sized air mattress used for camping has...Ch. 11 - Prob. 52PECh. 11 - (a) A 75.0-kg man floats in freshwater with 3.00%...Ch. 11 - What is the pressure inside an alveolus having a...Ch. 11 - (a) The pressure inside an alveolus with a 2.00104...Ch. 11 - What is the gauge pressure in millimeters of...Ch. 11 - Prob. 57PECh. 11 - Prob. 58PECh. 11 - Prob. 59PECh. 11 - Prob. 60PECh. 11 - If the gauge pressure inside a rubber balloon with...Ch. 11 - Calculate the gauge pressures inside...Ch. 11 - Suppose water is raised by capillary action to a...Ch. 11 - Calculate the contact angle for olive oil if...Ch. 11 - When two soap bubbles touch, the larger is...Ch. 11 - Calculate the ratio of the heights to which water...Ch. 11 - What is the ratio of heights to which ethyl...Ch. 11 - During forced exhalation, such as when blowing up...Ch. 11 - You can chew through very tough objects with your...Ch. 11 - One way to force air into an unconscious person's...Ch. 11 - Heroes in movies hide beneath water and breathe...Ch. 11 - Gauge pressure in the fluid surrounding an...Ch. 11 - A full-term fetus typically has a mass of 3.50 kg....Ch. 11 - If the pressure in the esophagus is -2.00 mm Hg...Ch. 11 - Prob. 75PECh. 11 - Calculate the maximum force in newtons exerted by...Ch. 11 - During heavy lifting, a disk between spinal...Ch. 11 - When a person sits erect, increasing the vertical...Ch. 11 - (a) How high will water rise in a glass capillary...Ch. 11 - Prob. 80PECh. 11 - Suppose you hit a steel nail with a 0.500-kg...Ch. 11 - Calculate the pressure due to the ocean at the...Ch. 11 - Prob. 83PECh. 11 - Some miners wish to remove water from a mine...Ch. 11 - You are pumping up a bicycle tire with a hand...Ch. 11 - Consider a group of people trying to stay afloat...Ch. 11 - The alveoli in emphysema victims are damaged and...Ch. 11 - Prob. 1TPCh. 11 - Prob. 2TPCh. 11 - Prob. 3TPCh. 11 - Prob. 4TPCh. 11 - Prob. 5TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. Studies of DNA support which of the following?
a. Members of the group called australopiths were the first t...
Campbell Biology: Concepts & Connections (9th Edition)
Look at the relative positions of each pair of atoms listed here in the periodic table. How many core electrons...
Organic Chemistry (8th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- solve for (_) Narrow_forwardTwo boxes of fruit on a frictionless horizontal surface are connected by a light string as in the figure below, where m₁ = 11 kg and m₂ = 25 kg. A force of F = 80 N is applied to the 25-kg box. mq m1 Applies T Peaches i (a) Determine the acceleration of each box and the tension in the string. acceleration of m₁ acceleration of m₂ tension in the string m/s² m/s² N (b) Repeat the problem for the case where the coefficient of kinetic friction between each box and the surface is 0.10. acceleration of m₁ acceleration of m₂ tension in the string m/s² m/s2 Narrow_forwardAll correct but t1 and t2 from part Aarrow_forward
- Three long, straight wires are mounted on the vertices of an equilateral triangle as shown in the figure. The wires carry currents of I₁ = 3.50 A, I2 = 5.50 A, and I3 = 8.50 A. Each side of the triangle has a length of 34.0 cm, and the point (A) is located half way between (11) and (12) along one of the sides. Find the magnitude of the magnetic field at point (A). Solve in Teslas (T). I₁arrow_forwardNumber There are four charges, each with a magnitude of 2.38 μC. Two are positive and two are negative. The charges are fixed to the corners of a 0.132-m square, one to a corner, in such a way that the net force on any charge is directed toward the center of the square. Find the magnitude of the net electrostatic force experienced by any charge. ips que Mi Units estic re harrow_forwardTwo long, straight wires are separated by distance, d = 22.0 cm. The wires carry currents of I1 = 7.50 A and I2 = 5.50 A in opposite directions, as shown in the figure. Find the magnitude of the net magnetic field at point (B). Let r₁ = 12.0 cm, r2 = 7.00 cm, and r3 = 13.0 cm. Solve in T. 12 d A √3arrow_forward
- Thank you in advance, image with question is attached below.arrow_forwardQuestion is attached, thank you.arrow_forwardTwo very small spheres are initially neutral and separated by a distance of 0.612 m. Suppose that 4.12 × 1013 electrons are removed from one sphere and placed on the other. (a) What is the magnitude of the electrostatic force that acts on each sphere? (b) Is the force attractive or repulsive?arrow_forward
- Estimate the diameter of the Moon. During a total solar eclipse, the Moon passes in front of the Sun so that during “totality” their apparent sizes match and the Moon blocks light from the Sun shining on the Earth. a) What do you predict the size of the Moon would be if you were to use a pinhole in an aluminum holder, meter stick, and white paper screen to project light from the full Moon through a pinhole onto a screen that is one meter away from the pinhole? b) Describe in detail how you would use this apparatus and your knowledge of pinhole phenomena to estimate the diameter of the Moon. Assume that the distance between the Earth and the Moon is 250,000 miles.arrow_forwardThe following data was collected for a friction experiment in which an object was observed moving at constant speed over a surface. Graph the Applied Force versus the Normal Force and determine the coefficient of friction. Is this value the coefficient of kinetic friction or the coefficient of static friction? Justify your answer. Trial Normal Force Applied Force 1 4.13 1.44 2 6.41 1.68 3 8.94 2.82 4 11.34 3.94 5 13.82 5.05arrow_forward1. Measurements and Linear Regression 1.1 Introduction The objective of this lab assignment is to represent measurement data in graphical form in order to illustrate experimental data and uncertainty visually. It is often convenient to represent experimental data graphically, not only for reporting results but also to compute or measure several physical parameters. For example, consider two physical quantities represented by x and y that are linearly related according to the algebraic relationship, y=mx+b, (1.1) where m is the slope of the line and b is the y-intercept. In order to assess the linearity between y and x, it is convenient to plot these quantities in a y versus x graph, as shown in Figure 1.1. Datapoints Line of regression Figure 1.1: Best fit line example. Once the data points are plotted, it is necessary to draw a "best fit line" or "regression line" that describes the data. A best fit line is a straight line that is the best approximation of the given set of data, and…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY