Concept explainers
In Chapter 10, we saw that electronegativity differences determine whether bond dipoles exist in a molecule and that molecular shape determines whether bond dipoles cancel (nonpolar molecules) or combine to produce a resultant dipole moment (polar molecules). Thus, the ozone molecule,
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
GENERAL CHEMISTRY(LL)-W/MASTERINGCHEM.
- Best Lewis Formula and Molecular Geometry A student writes the Lewis electron-dot formula for the carbonate anion, CO32, as a Does this Lewis formula obey the octet rule? Explain. What are the formal charges on the atoms? Try describing the bonding for this formula in valence bond terms. Do you have any difficulty doing this? b Does this Lewis formula give a reasonable description of the electron structure, or is there a better one? If there is a better Lewis formula, write it down and explain why it is better. c The same student writes the following resonance description for CO2: Is there something wrong with this description? (What would you predict as the geometries of these formulas?) d Is one or the other formula a better description? Could a value for the dipole moment help you decide? e Can you write a Lewis formula that gives an even better description of CO2? Explain your answer.arrow_forwardConsider the following compounds: CO2, SO2, KrF2, SO3, NF3, IF3, CF4, SF4, XeF4, PF5, TF5, and SCl6. These 12 compounds are all examples of different molecular structures. Draw the Lewis structures for each and predict the molecular structures. Predict the bond angles and the polarity of each. (A polar molecule has a net dipole moment, while a nonpolar molecule does not.) See Exercises 25 and 26 for the molecular structures based on the trigonal bipyramid and the octahedral geometries.arrow_forwardFormamide, HC(O)NH2, is prepared at high pressures from carbon monoxide and ammonia, and serves as an industrial solvent (the parentheses around the O indicate that it is bonded only to the carbon atom and that the carbon atom is also bonded to the H and the N atoms). Two resonance forms (one with formal charges) can be written for formamide. Write both resonance structures, and predict the bond angles about the carbon and nitrogen atoms for each resonance form. Are they the same? Describe how the experimental determination of the HNH bond angle could be used to indicate which resonance form is more important.arrow_forward
- In each of the following molecules, a central atom is surrounded by a total of three atoms or unshared electron pairs: SnCl2, BCl3, SO2. In which of these molecules would you expect the bond angle to be less than 120? Explain your reasoning.arrow_forwardIt is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwardWhich of these molecules have an odd number of valence electrons: NO2, SCl2, NH3, NO3?arrow_forward
- Successive substitution of F atoms for H atoms in the molecule NH3 produces the molecules NH2F, NHF2, and NF3. a. Draw Lewis structures for each of the four molecules. b. Using VSEPR theory, predict the geometry of each of the four molecules. c. Specify the polarity (polar or nonpolar) for each of the four molecules.arrow_forwardIn the gas phase, positive and negative ions form ion pairs that are like molecules. An example is KF, which is found to have a dipole moment of 28.7 1030 C m and a distance of separation between the two ions of 217.2 pm. Use this information and the definition of dipole moment to calculate the partial charge on each atom. Compare your result with the expected charge, which is the charge on an electron, 1.602 1019 C. Based on your result, is KF really completely ionic?arrow_forwardIndicate which molecules are polar and which are nonpolar. (a) SeO2 (b) N2O (N is the central atom) (c) SCl4arrow_forward
- Explain why CF4 and Xef4 are nonpolar compounds (have no net dipole moments) while SF4 is polar (has a net dipo le moment). Is CO2 polar? What about COS?arrow_forwardThe molecular structure shown is of one form of glucose, C6H12O6 Glucose can be oxidized to carbon dioxide and water according to the equation C6H12O6(S) + 6 O2(g)6 CO2(g) + 6 H2O(g) (a) Using the method described in Section 6-6a for estimating enthalpy changes from bond energies, estimate rH for the oxidation of this form of glucose. Make a list of all bonds broken and all bonds formed in this process. (b) Compare your result with the experimental value of 2816 kJ/mol for combustion of glucose. Why might there be a difference between this value and the one you calculated in part (a)?arrow_forwardA hypothetical covalent molecule, X–Y, has a dipole moment of 1.12D and a bond length of 101 pm. Calculate the partial charge on a pole of this molecule in terms of e, where e is the charge on an electron.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning