
(a)
To write:
Experiment to prove that GLUT-1 is glucose specific uniporter.
Introduction:
GLUT1 is uniporter specific for glucose. It facilitates the transport of glucose across the plasma membrane. It is found in the erythrocytes cell membrane.

Explanation of Solution
GLUT1 is a glucose uniporter which facilitates the transport of glucose across the plasma membrane. It is encoded by SLC2A1 gene.
The conformation of GLUT1 makes it distinct. It has binding sites at transmembrane segments 9, 10 and 11 which only binds to glucose. To prove that GLUT1 is glucose specific uniporter we need to perform certain experiments. For this experiment, we use sodium ions as glucose cotransporter. When the experiment is done, we see that galactose and mannose do not bind to the GLUT due to the different structure than glucose. Also, we can perform DLS to detect glucose specific binding sites.
GLUT1 enzyme has specific conformation for the glucose only. It does not transport any other carbohydrate.
(b)
To write:
Reason for ribose not binding to GLUT1.
Introduction:
GLUT1 has specific conformation for glucose. It helps the glucose to pass the plasma membrane of the cell. So that glucose can provide energy to the cell.
Ribose is a 5-carbon sugar and glucose is a 6 carbon sugar. But glucose can bind to the GLUT1 and ribose can not. The reason is that enzymes are not size dependent. They are based on the conformation of the substrate. So, it does not matter if the size of the ribose is smaller than the glucose. GLUT1 accepts conformation of glucose only not ribose.
Ribose does not bind to the GLUT1 because the binding site of GLUT1 enzyme only accepts the conformation of glucose.
(c)
To write:
Effect on glucose transport activity of GLUT1 if the blood glucose level falls.
Introduction:
Glucose is the main source of energy for our body. If the glucose level falls, then our cells will get short of glucose and energy will not be formed in our body. This condition is termed as hyperglycemia. GLUT1 is the glucose transporter enzyme. It transports the glucose from blood plasma into the cells.
(b)
To write:
Reason for ribose not binding to GLUT1.
Introduction:
GLUT1 has specific conformation for glucose. It helps the glucose to pass the plasma membrane of the cell. So that glucose can provide energy to the cell.
Ribose is a 5-carbon sugar and glucose is a 6 carbon sugar. But glucose can bind to the GLUT1 and ribose can not. The reason is that enzymes are not size dependent. They are based on the conformation of the substrate. So, it does not matter if the size of the ribose is smaller than the glucose. GLUT1 accepts conformation of glucose only not ribose.
Ribose does not bind to the GLUT1 because the binding site of GLUT1 enzyme only accepts the conformation of glucose.

Explanation of Solution
Ribose is a 5-carbon sugar and glucose is a 6 carbon sugar. But glucose can bind to the GLUT1 and ribose can not. The reason is that enzymes are not size dependent. They are based on the conformation of the substrate. So, it does not matter if the size of the ribose is smaller than the glucose. GLUT1 accepts conformation of glucose only not ribose.
Ribose does not bind to the GLUT1 because the binding site of GLUT1 enzyme only accepts the conformation of glucose.
(c)
To write:
Effect on glucose transport activity of GLUT1 if the blood glucose level falls.
Introduction:
Glucose is the main source of energy for our body. If the glucose level falls, then our cells will get short of glucose and energy will not be formed in our body. This condition is termed as hyperglycemia. GLUT1 is the glucose transporter enzyme. It transports the glucose from blood plasma into the cells.

Explanation of Solution
The above equation is Michalis Menten equation. This equation is for the enzymes. The parameters meaning are as follows:
Vmax = maximum initial rate of a reaction
Km = concentration of the substrate when Vmax is half
[S] = concentration of the substrate.
For any enzyme the values of Vmax and Km are different. Value of Km = 26.2mM and value of Vmax = 3.5nmol/min/cell. From the question, we get the value of [S] as 5mM and 2.75mM. using these values, we can determine the change in GLUT1 activity for glucose.
Calculating the value of V (
Calculating the value of V (rate of reaction) for [S] = 2.75 mM
So, as the concentration decreases the rate of the reaction decreases. So as the rate of reaction decreases the uptake of glucose is decreased by the GLUT1 enzyme. This results in less transport of glucose to the cell and hence less formation of energy by the cell.
As the concentration of the substrate decreases the rate of the enzymatic reaction decreases. When the glucose concentration is 5mM the rate of the reaction is 0.56nmol/min/cell. When the glucose concentration is 2.75mM then the rate of the reaction is 0.331nmol/min/cell. So, as the glucose level falls in the blood then the rate of the enzymatic reaction goes down. This results in less transfer of glucose molecules across the plasma membrane.
(c)
To write:
Effect on glucose transport activity of GLUT1 if the blood glucose level falls.
Introduction:
Glucose is the main source of energy for our body. If the glucose level falls, then our cells will get short of glucose and energy will not be formed in our body. This condition is termed as hyperglycemia. GLUT1 is the glucose transporter enzyme. It transports the glucose from blood plasma into the cells.

Explanation of Solution
The above equation is Michalis Menten equation. This equation is for the enzymes. The parameters meaning are as follows:
Vmax = maximum initial rate of a reaction
Km = concentration of the substrate when Vmax is half
[S] = concentration of the substrate.
For any enzyme the values of Vmax and Km are different. Value of Km = 26.2mM and value of Vmax = 3.5nmol/min/cell. From the question, we get the value of [S] as 5mM and 2.75mM. using these values, we can determine the change in GLUT1 activity for glucose.
Calculating the value of V (rate of reaction) for [S] = 5mM
Calculating the value of V (rate of reaction) for [S] = 2.75 mM
So, as the concentration decreases the rate of the reaction decreases. So as the rate of reaction decreases the uptake of glucose is decreased by the GLUT1 enzyme. This results in less transport of glucose to the cell and hence less formation of energy by the cell.
As the concentration of the substrate decreases the rate of the enzymatic reaction decreases. When the glucose concentration is 5mM the rate of the reaction is 0.56nmol/min/cell. When the glucose concentration is 2.75mM then the rate of the reaction is 0.331nmol/min/cell. So, as the glucose level falls in the blood then the rate of the enzymatic reaction goes down. This results in less transfer of glucose molecules across the plasma membrane.
Want to see more full solutions like this?
- What is a gain of function mutation?arrow_forwardMolecular Biology Question: Please help. Thank you Is Southern hybridization's purpose detecting specific nucleotide sequences? How so?arrow_forwardUse the following information to answer the question(s) below. Martin Wikelski and L. Michael Romero (Body size, performance and fitness in Galápagos marine iguanas, Integrative and Comparative Biology 43 [2003]:376-86) measured the snout-to-vent (anus) length of Galápagos marine iguanas and observed the percent survival of different-sized animals, all of the same age. The graph shows the log snout-vent length (SVL, a measure of overall body size) plotted against the percent survival of these different size classes for males and females. Survival (%) 100- 80- 60- 40- 20- 0+ 1.9 T 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Log SVL (mm) 19) Examine the figure above. What type of selection for body size appears to be occurring in these marine iguanas? A) directional selection B) stabilizing selection C) disruptive selection D) You cannot determine the type of selection from the above information. 3arrow_forward
- 24) Use the following information to answer the question below. Researchers studying a small milkweed population note that some plants produce a toxin and other plants do not. They identify the gene responsible for toxin production. The dominant allele (T) codes for an enzyme that makes the toxin, and the recessive allele (t) codes for a nonfunctional enzyme that cannot produce the toxin. Heterozygotes produce an intermediate amount of toxin. The genotypes of all individuals in the population are determined (see table) and used to determine the actual allele frequencies in the population. TT 0.49 Tt 0.42 tt 0.09 Refer to the table above. Is this population in Hardy-Weinberg equilibrium? A) Yes. C) No; there are more homozygotes than expected. B) No; there are more heterozygotes than expected. D) It is impossible to tell.arrow_forward30) A B CDEFG Refer to the accompanying figure. Which of the following forms a monophyletic group? A) A, B, C, and D B) C and D C) D, E, and F D) E, F, and Garrow_forwardMolecular Biology Question. Please help with step solution and explanation. Thank you: The Polymerase Chain Reaction (PCR) reaction consists of three steps denaturation, hybridization, and elongation. Please describe what occurs in the annealing step of the PCR reaction. (I think annealing step is hybridization). What are the other two steps of PCR, and what are their functions? Next, suppose the Tm for the two primers being used are 54C for Primer A and 67C for Primer B. Regarding annealing step temperature, I have the following choices for the temperature used during the annealing step:(a) 43C (b) 49C (c) 62C (d) 73C Which temperature/temperatures should I choose? What is the corresponding correct explanation, and why would I not use the other temperatures? Have a good day!arrow_forward
- Using the data provided on the mean body mass and horn size of 4-year-old male sheep, draw a scatterplot graph to examine how body mass and horn size changed over time.arrow_forwardPlease write a 500-word report about the intake of saturated fat, sodium, alcoholic beverages, or added sugar in America. Choose ONE of these and write about what is recommended by the Dietary Guidelines for Americans (guideline #4) and why Americans exceed the intake of that nutrient. Explain what we could do as a society and/or individuals to reduce our intake of your chosen nutrient.arrow_forwardWrite a 500-word report indicating how you can change the quantity or quality of TWO nutrients where your intake was LOWER than what is recommended by the Dietary Guidelines for Americans and/or the DRIs. Indicate how the lack of the nutrient may affect your health. For full credit, all of the following points must be addressed and elaborated on in more detail for each nutrient: The name of the nutrient At least 2 main functions of the nutrient (example: “Vitamin D regulates calcium levels in the blood and calcification of bones.”) Your percent intake compared to the RDA/DRI (example “I consumed 50% of the RDA for vitamin D”) Indicate why your intake was below the recommendations (example: “I only had one serving of dairy products and that was why I was below the recommendations for vitamin D”) How would you change your dietary pattern to meet the recommendations? – be sure to list specific foods (example: “I would add a yogurt and a glass of milk to each day in order to increase my…arrow_forward
- Why are nutrient absorption and dosage levels important when taking multivitamins and vitamin and mineral supplements?arrow_forwardI'm struggling with this topic and would really appreciate your help. I need to hand-draw a diagram and explain the process of sexual differentiation in humans, including structures, hormones, enzymes, and other details. Could you also make sure to include these terms in the explanation? . Gonads . Wolffian ducts • Müllerian ducts . ⚫ Testes . Testosterone • Anti-Müllerian Hormone (AMH) . Epididymis • Vas deferens ⚫ Seminal vesicles ⚫ 5-alpha reductase ⚫ DHT - Penis . Scrotum . Ovaries • Uterus ⚫ Fallopian tubes - Vagina - Clitoris . Labia Thank you so much for your help!arrow_forwardRequisition Exercise A phlebotomist goes to a patient’s room with the following requisition. Hometown Hospital USA 125 Goodcare Avenue Small Town, USAarrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education





