(a)
Interpretation:
The fastest reverse reaction for the reactions in the question
Concept Introduction:
The Arrhenius equation is given below.
Where
If the forward reaction is exothermic the activation energy for the reverse reaction can be calculated as follows,
If the forward reaction is endothermic the activation energy for the reverse reaction can be calculated as follows,
(b)
Interpretation:
The slowest reverse reaction for the reactions in the question
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
- . Account for the increase in reaction rate brought about by a catalyst.arrow_forwardExplain what is meant by the average rate of a reaction.arrow_forwardWhich of the reactions in Question 62 would (a) occur fastest? (b) occur slowest? (Assume equal temperatures, equal concentrations, equal frequency factors, and the same rate law for all reactions.)arrow_forward
- The following equation represents a reversible decomposition: CaCO3(s)CaO(s)+CO2(g) Under what conditions will decomposition in a closed container proceed to completion so that no CaCO3 remains?arrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forward. Hydrogen gas and chlorine gas in the presence of light react explosively to form hydrogen chloride H2(g)+Cl2(g)2HCl(g)The reaction is strongly exothermic. Would an increase in temperature for the system lend to favor or disfavor the production of hydrogen chloride?arrow_forward
- Based on the diagrams in Exercise 12.83, which of the reactions has the fastest rate? Which has the slowest rate?arrow_forwardThe decomposition of XY is second order in XY and has a rate constant of 7.41 × 10−3 L·mol−1·s−1 at a certain temperature, the half-life for this reaction at an initial concentration of 0.101 mol·L−1 1336. A) If the initial concentration of XY is 0.225 mol·L−1, how long will it take for the concentration to decrease to 6.95 × 10−2 mol·L−1 ?, B) If the initial concentration of XY is 0.080 mol·L−1, what is the concentration of XY after 75 s ?arrow_forwardConsider the following reaction: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first order in H2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 79200, what is the reaction rate when [NO(g)] = 0.0852 M and [H2(g)] = 0.137 M?Rate =____ M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.170 M while the concentration of H2(g) is 0.137 M?Rate = ____ M/sarrow_forward
- 1. Which of the following statements is incorrect? (A) As the chemical reaction proceeds, the rate of reaction increases. (B) The reaction rate almost gets doubled for 10°C rise in temperature. (C) For a first order chemical reaction, the rate constant has unit of time-1. (D) Chemical kinetics can predict the rate of a chemical reaction. 2. In a chemical reaction, represented by A → P, it is observed that the rate of reaction increases by a factor of 4 on doubling the concentration of the reactant. The rate of reaction increases by a factor of 9 on trebling the concentration of the reactant. Then the rate of the reaction is proportional to (A) CA (B) CA2 (C) CA3 (D) CA4 3. An elementary reaction has the stoichiometric equation A + 2B = P. What is the order of reaction (A) 0 (B) 1 (C) 2 (D) 3 4. It states that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. (A) Law of mass action…arrow_forwardConsider the following proposed mechanismHBr + HBr ⇄ H2Br2(fast, equilibrium)HBr + R ⇄ ES(fast, equilibrium)H2Br2 +ES→P+2HBr(slow) (1a) What is the overall reaction? (1b) Identify all catalysts and intermediates in this reaction mechanism. (1c) What is the rate law derived from this mechanism? (1d) If the experimentally determined rate law is rate = k [HBr]3[R]1 what conclusion can be drawn? (1e) If the experimentally determined rate law is rate = k [HBr]2 what conclusion can be drawn? The equilibrium constant (KC) is 10.0 x 10-10 atarrow_forward3arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax