
Physics: Principles and Applications -- Pearson e Text Instant Access (Pearson+)
7th Edition
ISBN: 9780137679065
Author: Douglas Giancoli
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 51P
To determine
At least three other frequencies at which the string will resonate.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)
Now add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.
For a tornadoes and hurricanes, which of the following is most critical?
an alert
a watch
a warning
a prediction
Chapter 11 Solutions
Physics: Principles and Applications -- Pearson e Text Instant Access (Pearson+)
Ch. 11 - Prob. 1OQCh. 11 - Prob. 2OQCh. 11 - 1. Is the acceleration of a simple harmonic...Ch. 11 - Prob. 2QCh. 11 - How could you double the maximum speed of a simple...Ch. 11 - 4.If a pendulum clock isaccurate at sea level,...Ch. 11 - Prob. 5QCh. 11 - For a simple harmonic oscillator, when (if ever)...Ch. 11 - Two equal masses are attached to separate...Ch. 11 - S. What is the approximate period of your walking...
Ch. 11 - What happens to the period of a playground swing...Ch. 11 - Why can you make water slosh back and forth in a...Ch. 11 - Is the frequency of a simple periodic wave equal...Ch. 11 - Prob. 12QCh. 11 - What kind of waves do you think will travel along...Ch. 11 - Since the density of air decreases with an...Ch. 11 - Prob. 15QCh. 11 - How did geophysicists determine that part of the...Ch. 11 - Prob. 17QCh. 11 - Prob. 18QCh. 11 - Prob. 19QCh. 11 - Prob. 20QCh. 11 - Prob. 21QCh. 11 - Prob. 22QCh. 11 - Why do the strings used for the lowest-frequency...Ch. 11 - Prob. 24QCh. 11 - Prob. 25QCh. 11 - Prob. 26QCh. 11 - Prob. 27QCh. 11 - Prob. 1MCQCh. 11 - 2. An object oscillates back and forth on the end...Ch. 11 - Prob. 3MCQCh. 11 - Prob. 4MCQCh. 11 - Prob. 5MCQCh. 11 - Prob. 6MCQCh. 11 - At a playground, two young children are on...Ch. 11 - Prob. 8MCQCh. 11 - Prob. 9MCQCh. 11 - Prob. 10MCQCh. 11 - Prob. 11MCQCh. 11 - Prob. 12MCQCh. 11 - Prob. 13MCQCh. 11 - A student attaches one end of a Slinky to the top...Ch. 11 - Prob. 15MCQCh. 11 - If a particle undergoes SHM with amplitude 0.21 m,...Ch. 11 - 2. (I) The springs of a 1700-kg car compress 5.0...Ch. 11 - An elastic cord is 61 cm long when a weight of 75...Ch. 11 - 4 (II) Estimate the stiffness of the spring in a...Ch. 11 - A fisherman's scale stretches 3.6 cm when a 2.4-kg...Ch. 11 - Prob. 6PCh. 11 - A mass mat the end of a spring oscillates with a...Ch. 11 - Prob. 8PCh. 11 - Figure 11-51 |O shows two examples of SHM, labeled...Ch. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - A 1.65-kg mass stretches a vertical spring 0.215...Ch. 11 - A 1 15-kg mass oscillates according to the...Ch. 11 - A 0.25-kg mass at the end of a spring oscillates...Ch. 11 - It takes a force of 91.0 N to compress the spring...Ch. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - A mass resting on a horizontal, frictionless...Ch. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - 25 (III) A 1.60-kg object oscillates at the end of...Ch. 11 - 26. (Ill) Consider two objects, A and B, both...Ch. 11 - A pendulum has a period of 1.85 s on Earth. Whatis...Ch. 11 - How long must a simple pendulum be if it is to...Ch. 11 - A pendulum makes 28 oscillations in exactly 50 s....Ch. 11 - Prob. 30PCh. 11 - Your grandfather clock's pendulum has a length of...Ch. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - 34 (III) A clock pendulum oscillates at a...Ch. 11 - A fisherman notices that wave crests pass the bow...Ch. 11 - A sound wave in air has a frequency of 282 Hz and...Ch. 11 - Prob. 37PCh. 11 - AM radio signals have frequencies between 550 kHz...Ch. 11 - Prob. 39PCh. 11 - A cord of mass 0.65 kg is stretched between two...Ch. 11 - A 0.40-kg cord is stretched between two supports,...Ch. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - 45 (II) The intensity of an earthquake wave...Ch. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - A guitar string is 92 cm long and has a mass of...Ch. 11 - One end of a horizontal string is attached to a...Ch. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - 61. What frequency of sound would have a...Ch. 11 - Prob. 62GPCh. 11 - An energy-absorbing car bumper has a spring...Ch. 11 - Prob. 64GPCh. 11 - A block of mass mis suspended from a ceiling by a...Ch. 11 - 66. A block with mass m =6.0 kg rests on a...Ch. 11 - Prob. 67GPCh. 11 - Prob. 68GPCh. 11 - Prob. 69GPCh. 11 - Prob. 70GPCh. 11 - A 320-kg wooden raft floats on a lake. When a...Ch. 11 - Prob. 72GPCh. 11 - Prob. 73GPCh. 11 - Prob. 74GPCh. 11 - Carbon dioxide is a linear molecule The...Ch. 11 - Prob. 76GPCh. 11 - Prob. 77GPCh. 11 - Prob. 78GPCh. 11 - Prob. 79GPCh. 11 - Prob. 80GPCh. 11 - Prob. 81GPCh. 11 - Prob. 82GPCh. 11 - The ripples in certain groove 10.2 cm from the...Ch. 11 - Prob. 84GPCh. 11 - Prob. 85GPCh. 11 - Prob. 86GPCh. 11 - Prob. 87GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forwardA 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 Sarrow_forward
- A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?arrow_forwardFor what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forward
- Consider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forwardThe molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY