Find the complex power absorbed by each passive element in the circuit in Figure 11.47 in the textbook and power factor of the source.
Answer to Problem 48E
The complex power absorbed by
Explanation of Solution
Given data:
Refer to Figure 11.47 in the textbook for the given circuit.
Formula used:
Write the expression for complex power absorbed by the element as follows:
Here,
Write the expression for current in terms of voltage and impedance as follows:
Write the expression for complex power in the rectangular form as follows:
Here,
Write the expression for power factor as follows:
Calculation:
Find the equivalent impedance of the shunt components in the circuit as follows:
Use the expression in Equation (2) and find the source current as follows:
Substitute
Modify the expression in Equation (1) for the complex power supplied by the source as follows:
Substitute
Rewrite the expression for complex power supplied by the source in rectangular form as follows:
Compare the complex power supplied by the source with the expression in Equation (3) and write the average and reactive power supplied by the source as follows:
Substitute
If the imaginary part of the complex power (reactive power) is positive value, then the load has lagging power factor. If the imaginary part is negative value, then the load has leading power factor.
As the imaginary part of the given complex power is negative value, the power factor is leading power factor.
Use voltage division rule and find the voltage across
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Consider the node voltage across the shunt branches as
Substitute
Use voltage division rule and find the voltage across
Substitute
Use current division rule and find the current through first shunt branch (through
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Use voltage division rule and find the voltage across
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Use current division rule and find the current through second shunt branch (through
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Use current division rule and find the current through third shunt branch (through
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Conclusion:
Thus, the complex power absorbed by
Want to see more full solutions like this?
Chapter 11 Solutions
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
- Please solve in detailarrow_forward6.7 The transmitting aerial shown in Fig. Q.3 is supplied with current at 80 A peak and at frequency 666.66 kHz. Calculate (a) the effective height of the aerial, and (b) the electric field strength produced at ground level 40 km away. 60 m Fig. Q.3 Input 48 m Eartharrow_forwardox SIM 12.11 Consider the class B output stage, using MOSFETs, shown in Fig. P12.11. Let the devices have |V|= 0.5 V and μC WIL = 2 mA/V². With a 10-kHz sine-wave input of 5-V peak and a high value of load resistance, what peak output would you expect? What fraction of the sine-wave period does the crossover interval represent? For what value of load resistor is the peak output voltage reduced to half the input? Figure P12.11 +5 V Q1 Q2 -5Varrow_forward
- 4 H ་་་་་་་ 四一周 A H₂ Find out put c I writ R as a function G, H, Harrow_forward4 H A H₂ 四一周 Find out put c I writ R as a function G, H, Harrow_forward8. (a) In a Round-Robin tournament, the Tigers beat the Blue Jays, the Tigers beat the Cardinals, the Tigers beat the Orioles, the Blue Jays beat the Cardinals, the Blue Jays beat the Orioles and the Cardinals beat the Orioles. Model this outcome with a directed graph. https://www.akubihar.com (b) (c) ✓ - Let G = (V, E) be a simple graph. Let R be the relation on V consisting of pairs of vertices (u, v) such that there is a path from u to vor such that u= v. Show that R is an equivalence relation. 3 3 Determine whether the following given pair of directed graphs, shown in Fig. 1 and Fig. 2, are isomorphic or not. Exhibit an isomorphism or provide a rigorous argument that none exists. 4+4=8 Աշ աշ ИНИЯ Fig. 1 Fig. 2 Querarrow_forward
- EXAMPLE 4.5 Objective: Determine ID, circuit. V SG' SD Vs and the small - signal voltage gain of a PMOS transistor Consider the circuit shown in Figure 4.20(a). The transistor parameters are A K = 0.80m- V Р _2’TP = 0.5V, and λ = 0 Varrow_forwardNeed a solution and don't use chatgptarrow_forwardNeed a solarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,