
Find the complex power absorbed by each passive element in the circuit in Figure 11.47 in the textbook and power factor of the source.

Answer to Problem 48E
The complex power absorbed by
Explanation of Solution
Given data:
Refer to Figure 11.47 in the textbook for the given circuit.
Formula used:
Write the expression for complex power absorbed by the element as follows:
Here,
Write the expression for current in terms of voltage and impedance as follows:
Write the expression for complex power in the rectangular form as follows:
Here,
Write the expression for power factor as follows:
Calculation:
Find the equivalent impedance of the shunt components in the circuit as follows:
Use the expression in Equation (2) and find the source current as follows:
Substitute
Modify the expression in Equation (1) for the complex power supplied by the source as follows:
Substitute
Rewrite the expression for complex power supplied by the source in rectangular form as follows:
Compare the complex power supplied by the source with the expression in Equation (3) and write the average and reactive power supplied by the source as follows:
Substitute
If the imaginary part of the complex power (reactive power) is positive value, then the load has lagging power factor. If the imaginary part is negative value, then the load has leading power factor.
As the imaginary part of the given complex power is negative value, the power factor is leading power factor.
Use voltage division rule and find the voltage across
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Consider the node voltage across the shunt branches as
Substitute
Use voltage division rule and find the voltage across
Substitute
Use current division rule and find the current through first shunt branch (through
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Use voltage division rule and find the voltage across
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Use current division rule and find the current through second shunt branch (through
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Use current division rule and find the current through third shunt branch (through
Substitute
Modify the expression in Equation (1) for the complex power absorbed by the
Substitute
Conclusion:
Thus, the complex power absorbed by
Want to see more full solutions like this?
Chapter 11 Solutions
Engineering Circuit Analysis
- can you please answerarrow_forwardThe line diagram is of a standard forward/reverse/stop pushbutton station for forwarding and reversing a motor. Included in the circuit are mechanical and auxiliary contact interlocking. Also included are a forward overtravel limit switch to stop the motor in forward and a reverse overtravel limit switch to stop the motor in reverse. Overload protection is common to both forward and reverse directions. Complete the wiring diagram based on the line diagram. Do not make any wire splices or additional terminal connections on the wiring diagram (notice how they make multiple connections in the power circuit). All connections must run from terminal screw to terminal screw complete the wiring diagram based on the line diagram. Do not make any wires splices or additional terminal connections on the wiring diagram. All connections must run from terminal screw to terminal screwarrow_forward6.7 Consider a baseband binary PAM system that transmits at 3600 bps with a bit error rate less than 10-4. The channel introduces no distortion, but attenuates the signal by 20 dB and has a bandwidth of 2.4 kHz. The channel noise is AWGN with a power spectral density of 10-14 watts per Hertz (W/Hz). Design the optimum transmitting and receiving filters, and determine the required transmit power.arrow_forward
- 6.10 In a baseband digital transmission, the bandwidth is 4 kHz, and the bit rate must be at least 38.4 kbps. Assuming M-ary signaling, determine the range of acceptable values of M, and the resulting bit error rate.arrow_forwardAssume a JFET device with VGS(0) = -1.3 and ipss = 20 mA. Design a self-biased (Fig. 2) JFET common-source amplifier with the gain of -2 and a DC biasing that allows the largest swing in ip. Note that you can choose Vcc to arrive at a desired RD to meet the gain requirement. Since you are designing for a given gain, you may have to check to see if JFET is biased correctly. (Hint: First find Rs for correct VGs and then use the gain to compute RD. Finally, use RD and Rs to determine Vec). Assume that the amplifier is to interface a source that expects a load of 50 2. Also, assume that the amplifier circuit is AC coupled at both ends with 3 dB corner frequency of 15 kHz.arrow_forwardEXAMPLE 6.7 Consider an M-ary system with the number of symbols M=16, and the roll-off factor a= Discuss this M-ary system, vis-à-vis the corresponding binary system, for various scenarios. Solution 1arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





