An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let T 1, …, T 4 denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below. 2 For instance, T 1 = (10 + 20 + T 2 + T 4 )/4, or 4 T 1 − T 2 − T 4 = 30 33. Write a system of four equations whose solution gives estimates for the temperatures T 1 , …, T 4 .
An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let T 1, …, T 4 denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below. 2 For instance, T 1 = (10 + 20 + T 2 + T 4 )/4, or 4 T 1 − T 2 − T 4 = 30 33. Write a system of four equations whose solution gives estimates for the temperatures T 1 , …, T 4 .
An important concern in the study of heat transfer is to determine the steady-state temperature distribution of a thin plate when the temperature around the boundary is known. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let T1, …, T4 denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes—to the left, above, to the right, and below.2 For instance,
T1 = (10 + 20 + T2 + T4)/4, or 4T1 − T2 − T4 = 30
33. Write a system of four equations whose solution gives estimates for the temperatures T1, …, T4.
Solve the system of equation for y using Cramer's rule. Hint: The
determinant of the coefficient matrix is -23.
-
5x + y − z = −7
2x-y-2z = 6
3x+2z-7
eric
pez
Xte
in
z=
Therefore, we have
(x, y, z)=(3.0000,
83.6.1 Exercise
Gauss-Seidel iteration with
Start with (x, y, z) = (0, 0, 0). Use the convergent Jacobi i
Tol=10 to solve the following systems:
1.
5x-y+z = 10
2x-8y-z=11
-x+y+4z=3
iteration (x
Assi 2
Assi 3.
4.
x-5y-z=-8
4x-y- z=13
2x - y-6z=-2
4x y + z = 7
4x-8y + z = -21
-2x+ y +5z = 15
4x + y - z=13
2x - y-6z=-2
x-5y- z=-8
realme Shot on realme C30
2025.01.31 22:35
f
Use Pascal's triangle to expand the binomial
(6m+2)^2
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY