College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 40P
The excess internal energy of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You read in a popular diet blog that the author claims you can lose up to half a pound of body fat per week if, instead of drinking 1.9 liters (i.e., 1.9 kilograms) of water every day, you can eat the same amount of water in the form of ice. The reasoning is that your body must first melt the ice and then bring the ice water up to the body temperature of 37°C, which is a process that requires a significant amount of energy at the expense of “burned” body fat. Thankfully, you just finished discussing heat and phase changes in your physics class, so you can calculate exactly how much energy is expended. The specific heat and latent heat of fusion for water are 4.186 × 103 J/(kg⋅°C) and 3.34×105 J/kg, respectively
a) How many kilocalories do you expend when you eat 1.9 kg of ice at 0°C? Note that 1 kcal = 4186 J.
b) Assuming the metabolism of one pound of body fat produces 3500 kcal of energy, how many pounds of body fat could you lose in a week just by eating 1.9 kilograms of ice every…
When you drink cold water, your body must expend metabolic energy in order to maintain normal body temperature (37° C) by warming up the water in your stomach. Could drinking ice water, then, substitute for exercise as a way to "burn calories?" Suppose you expend 422 kilocalories during a brisk hour-long walk. How many liters of ice water (0° C) would you have to drink in order to use up 422 kilocalories of metabolic energy? For comparison, the stomach can hold about 1 liter.
A patient has suffered blood loss and a health care provider is preparing a saline solution for
injection. The osmotic pressure of red blood cell is 7.05 atm, and the prepared solution should be
isotonic with those cells.
Note: body temperature is 37.15°C and that the gas constant R is 8.206×10
The conversion of temperature from °C to Kelvin is T in K = T°C+273.15
-2
L'atm
K-mol
(a) To prepare the saline solution, how many moles n of solute should be put into 2 L of distilled
water?
n =
mol
(b) Mistakenly, the concentration of the solution is only 1/4 of what it should be. What would be the
net osmotic pressure exerted on the walls of the red blood cells?
Hint: The concentrations inside the cell and outside the cell are now different. How can you calculate
the net osmotic pressure?
Пnet =
(c) The solution from part B is:
atm
(d) The diameter of a typical red blood cell is 6.04 μm. Calculate the net force the solution
experiences across the cell membrane.
Hint: We can assume that the…
Chapter 11 Solutions
College Physics:
Ch. 11.2 - Prob. 11.1QQCh. 11.4 - Prob. 11.2QQCh. 11.5 - Will an ice cube wrapped in a wool blanket remain...Ch. 11.5 - Two rods of the same length and diameter are made...Ch. 11.5 - Stars A and B have the same temperature, but star...Ch. 11 - Rub the palm of your hand on a metal surface for...Ch. 11 - On a clear, cold night, why does frost tend to...Ch. 11 - Substance A has twice the specific heat of...Ch. 11 - Equal masses of substance A at 10.0C and substance...Ch. 11 - Prob. 5CQ
Ch. 11 - Prob. 6CQCh. 11 - Cups of water for coffee or tea can be warmed with...Ch. 11 - The U.S. penny is now made of copper-coated zinc....Ch. 11 - A tile floor may feel uncomfortably cold to your...Ch. 11 - In a calorimetry experiment, three samples A, B,...Ch. 11 - Figure CQ11.11 shows a composite bar made of three...Ch. 11 - Objects A and B have the same size and shape with...Ch. 11 - A poker is a stiff, nonflammable rod used to push...Ch. 11 - On a very hot day, its possible to cook an egg on...Ch. 11 - Prob. 15CQCh. 11 - Star A has twice the radius and twice the absolute...Ch. 11 - Convert 3.50 103 cal to the equivalent number of...Ch. 11 - Prob. 2PCh. 11 - A 75-kg sprinter accelerates from rest to a speed...Ch. 11 - Prob. 4PCh. 11 - A persons basal metabolic rate (BMR) is the rate...Ch. 11 - The temperature of a silver bar rises by 10.0C...Ch. 11 - The highest recorded waterfall in the world is...Ch. 11 - An aluminum rod is 20.0 cm long at 20.0C and has a...Ch. 11 - Lake Erie contains roughly 4.00 1011 m3 of water....Ch. 11 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - A 1.5-kg copper block is given an initial speed of...Ch. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - What mass of water at 25.0C must be allowed to...Ch. 11 - Lead pellets, each of mass 1.00 g, are heated to...Ch. 11 - Prob. 19PCh. 11 - A large room in a house holds 975 kg of dry air at...Ch. 11 - Prob. 21PCh. 11 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 11 - A student drops two metallic objects into a 120-g...Ch. 11 - When a driver brakes an automobile, the friction...Ch. 11 - A Styrofoam cup holds 0.275 kg of water at 25.0C....Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - How much thermal energy is required to boil 2.00...Ch. 11 - A 75-g ice cube al 0C is placed in 825 g of water...Ch. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - A high-end gas stove usually has at least one...Ch. 11 - Prob. 38PCh. 11 - Steam at 100.C is added to ice at 0C. (a) Find the...Ch. 11 - The excess internal energy of metabolism is...Ch. 11 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 11 - A glass windowpane in a home is 0.62 cm thick and...Ch. 11 - A pond with a flat bottom has a surface area of...Ch. 11 - The thermal conductivities of human tissues vary...Ch. 11 - A steam pipe is covered with 1.50-cm-thick...Ch. 11 - The average thermal conductivity of the walls...Ch. 11 - Consider two cooking pots of the same dimensions,...Ch. 11 - A thermopane window consists of two glass panes,...Ch. 11 - A copper rod and an aluminum rod of equal diameter...Ch. 11 - A Styrofoam box has a surface area of 0.80 m and a...Ch. 11 - A rectangular glass window pane on a house has a...Ch. 11 - A granite ball of radius 2.00 m and emissivity...Ch. 11 - Measurements on two stars indicate that Star X has...Ch. 11 - The filament of a 75-W light bulb is at a...Ch. 11 - The bottom of a copper kettle has a 10.0-cm radius...Ch. 11 - A family comes home from a long vacation with...Ch. 11 - A 0.040.-kg ice cube floats in 0.200 kg of water...Ch. 11 - The surface area of an unclothed person is 1.50...Ch. 11 - A student measures the following data in a...Ch. 11 - Prob. 60APCh. 11 - A class of 10 students; taking an exam has a power...Ch. 11 - A class of 10 students taking an exam has a power...Ch. 11 - A bar of gold (Au) is in thermal contact with a...Ch. 11 - An iron plate is held against an iron, wheel so...Ch. 11 - Prob. 65APCh. 11 - Three liquids are at temperatures of 10C, 20C, and...Ch. 11 - Earths surface absorbs an average of about 960....Ch. 11 - A wood stove is used to heat a single room. The...Ch. 11 - Prob. 69APCh. 11 - Prob. 70APCh. 11 - The surface of the Sun has a temperature of about...Ch. 11 - The evaporation of perspiration is the primary...Ch. 11 - Prob. 73APCh. 11 - An ice-cube tray is filled with 75.0 g of water....Ch. 11 - An aluminum rod and an iron rod are joined end to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A patient has suffered blood loss and a health care provider is preparing a saline solution for injection. The osmotic pressure of red blood cell is 7 atm, and the prepared solution should be isotonic with those cells. Note: body temperature is 37.15°C and that the gas constant R is 8.206×10 -2 L'atm K-mol The conversion of temperature from °C to Kelvin is T in K = T°C+273.15 (a) To prepare the saline solution, how many moles n of solute should be put into 2 L of distilled water? n = mol (b) Mistakenly, the concentration of the solution is only 1/4 of what it should be. What would be the net osmotic pressure exerted on the walls of the red blood cells? Hint: The concentrations inside the cell and outside the cell are now different. How can you calculate the net osmotic pressure? net = (c) The solution from part B is: atm (d) The diameter of a typical red blood cell is 5.98 μm. Calculate the net force the solution experiences across the cell membrane. Hint: We can assume that the red…arrow_forwardAn ideal gas is brought through an isothermal compression process. The 5.00 mol of gas goes from having an initial volume of 240.7 cm³ to 104.9 cm³. If 2158 cal is released by the gas during this process, what are the temperature T of the gas and the final pressure pf? The gas constant is R = 8.31 J/mol-K, and there are 4.19 J/cal. T = Pf= K Paarrow_forwardWhen you drink cold water, your body must expend metabolic energy in order to maintain normal body temperature (37.0°C) by warming up the water in your stomach. Could drinking ice water, then, substitute for exercise as a way to "burn calories?" Suppose you expend 400. kilocalories during a brisk hour-long walk. How many liters of ice water (0°C) would you have to drink in order to use up 400. kilocalories of metabolic energy? For comparison, the stomach can hold about 1 liter.arrow_forward
- You can create ice by adding liquid nitrogen to a container of water. If you want to produce 200g of ice from 450g of water at 10°C, how many grams of liquid nitrogen (at its boiling point) would need to be added to the water? Assume that the liquid nitrogen leaves the container of water as soon as it turns to gas. Assume the water values are given to the nearest gram. The boiling point of liquid nitrogen is 77.3K. Given: Latent heat ofvaporisati on of nitrogen: L, = 201.0 kg Latent heat of fusion of water: Lf = 33 3.0 heat capacity of water: C, = 4.186 kg°C T(K) = T(°C) + 273.15 Qr = mC,AT: Qr or f = ml, or farrow_forwardAn ideal gas at an initial pressure pi=4Pa and temperature Ti=200k expands isobarically to 4 times its original volume. The gas is then further reduced in pressure at constant volume to of pf=1Pa. What is the final temperature of the gas Tf? (Hint: draw the multistep process on pV diagram)arrow_forwardJill takes in 0.0140 mol of air in a single breath. The air is taken in at 20.0°C and exhaled at 35.0°C. Her respiration rate is (1.30x10^1) breaths per minute. At what average rate does heat leave her body due to the temperature increase of the air? Provide your answer to three significant figures. HINT: Use the molar specific heat at constant volume to find the heat loss, where Cv = 5R/2 (for an ideal diatomic gas).arrow_forward
- A soccer ball has an interior volume of 150 cm3 at a pressure of 3.00 atmospheres and a temperature of 23.0° C. It develops a leak so that the pressure drops to 2.75 atm. The temperature remains constant What fraction of the number of moles must have escaped from the ball?arrow_forwardOverall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanisms of elimination are radiation, evaporation of sweat (2,430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection. A person working out in a gym has a metabolic rate of 2,500 kJ/h. His body temperature is 37°C, and the outside 5.6696 x 10-8 W/m2 · K4) temperature 22°C. Assume the skin has an area of 2.0 m2 and emissivity of 0.97. (o %D (a) At what rate is his excess thermal energy dissipated by radiation? (Enter your answer to at least one decimal place.) 136.7 Your response differs from the correct answer by more than 10%. Double check your calculations. W (b) If he eliminates 0.44 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat? (Enter your answer to at least one decimal place.) W (c) At what rate is energy eliminated by evaporation from the lungs? (Enter your answer to at least one…arrow_forwardThe reaction rate for the prepupal development of male Drosophila is temperature-dependent. Assuming that the reaction rate is exponential as in R ∝ e−Ea/(kBT), the activation energy for this development is 3.41 × 10−19 J. A Drosophila is originally at 19.00°C, and its temperature is increasing. If the rate of development has increased 3.50%, how much has its temperature increased? The value of the Boltzmann constant is 1.381 × 10−23 J/Karrow_forward
- At sea level and at a body temperature of 37 degrees Celsius, how many oxygen molecules do the lungs contain at the end of a strong inhalation? (Hint: answer is not 0.039 molecules) Use Avogadro’s number to calculate the answer.arrow_forwardA cylinder holds 0.3 moles of nitrogen gas at a temperature of 20°C and a pressure of 2.1 atm in container of volume 0.0034 m3. If you put the same amount of nitrogen gas into a second cylinder of a volume of 0.0017 m3, what must the temperature of the new cylinder be if you'd like the second cylinder to have the same pressure as the first?arrow_forwardDuring a plant visit, it was noticed that a 12-m-long section of a 10-cm-diameter steam pipe is completely exposed to the ambient air. The temperature measurements indicate that the average temperature of the outer surface of the steam pipe is 75°C when the ambient temperature is 5°C. There are also light winds in the area at 10 km/h. The emissivity of the outer surface of the pipe is 0.8, and the average temperature of the surfaces surrounding the pipe, including the sky, is estimated to be 0°C. Determine the amount of heat lost from the steam during a 10-h-long work day. Steam is supplied by a gas-fired steam generator that has an efficiency of 80 percent, and the plant pays $1.05/therm of natural gas. If the pipe is insulated and 90 percent of the heat loss is saved, determine the amount of money this facility will save a year as a result of insulating the steam pipes. Assume the plant operates every day of the year for 10 h. State your assumptions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY