College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 70AP
(a)
To determine
The mass of waxy material required to conduct the bacteriological test.
(b)
To determine
Why the calculation can be done without knowing the mass of the test samples or of the insulation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For bacteriological testing of water supplies and in medical clinics, samples must routinely be incubated for 24 h at 37°C. A standard constant-temperature bath with electric heating and thermostatic control is not suitable in developing nations without continuously operating electric power lines. Peace Corps volunteer and MIT engineer Amy Smith invented a low-cost, lowmaintenance incubator to fill the need. The device consists of a foam-insulated box containing several packets of a waxy material that melts at 37.0°C, interspersed among tubes, dishes, or bottles containing the test samples and growth medium (food for bacteria). Outside the box, the waxy material is first melted by a stove or solar energy collector. Then it is put into the box to keep the test samples warm as it solidifies. The heat of fusion of the phase-change material is 205 kJ/kg. Model the insulation as a panel with surface area 0.490 m2, thickness 9.50 cm, and conductivity 0.012 0 W/m°C. Assume the exterior…
For bacteriological testing of water supplies and in medical clinics, samples must routinely be incubated for 24 h at 37°C. A standard constant - temperature bath with electric heating and thermostatic control is not suitable in developing nations without continuously operating electric power lines. Peace Corps volunteer and MIT engineer Amy Smith invented a low - cost, low-maintenance incubator to fill the need. The device consists of a foam-insulated box containing several packets of a waxy material that melts at 37.0°C, interspersed among tubes, dishes, or bottles containing the test samples and growth medium (food for bacteria). Outside the box, the waxy material is first melted by a stove or solar energy collector. Then it is put into the box to keep the test samples warm as it solidifies. The heat of fusion of the phase-change material is 205 kJ/kg. Model the insulation as a panel with surface area 0.490 m2, thickness 9.50 cm, and conductivity 0.012 0 W/m ∙ °C. Assume the…
A certain car has 14 L of liquid coolant circulating at a temperature of 95 degrees Celsius through the engine’s cooling system. Assume that, in this normal condition, the coolant completely fills the 3.5 L volume of the aluminum radiator and the 10.5 L internal cavities within the aluminum engine. When a car overheats, the radiator, engine, and coolant expand and a small reservoir connected to the radiator catches any resultant coolant overflow. Estimate how much coolant overflows to the reservoir if the system goes from 95 degrees Celsius to 106 degrees Celsius. Model the radiator and engine as hollow shells of aluminum. The coefficient of volume expansion for coolant is 410x10^-6 degrees Celsius
Chapter 11 Solutions
College Physics:
Ch. 11.2 - Prob. 11.1QQCh. 11.4 - Prob. 11.2QQCh. 11.5 - Will an ice cube wrapped in a wool blanket remain...Ch. 11.5 - Two rods of the same length and diameter are made...Ch. 11.5 - Stars A and B have the same temperature, but star...Ch. 11 - Rub the palm of your hand on a metal surface for...Ch. 11 - On a clear, cold night, why does frost tend to...Ch. 11 - Substance A has twice the specific heat of...Ch. 11 - Equal masses of substance A at 10.0C and substance...Ch. 11 - Prob. 5CQ
Ch. 11 - Prob. 6CQCh. 11 - Cups of water for coffee or tea can be warmed with...Ch. 11 - The U.S. penny is now made of copper-coated zinc....Ch. 11 - A tile floor may feel uncomfortably cold to your...Ch. 11 - In a calorimetry experiment, three samples A, B,...Ch. 11 - Figure CQ11.11 shows a composite bar made of three...Ch. 11 - Objects A and B have the same size and shape with...Ch. 11 - A poker is a stiff, nonflammable rod used to push...Ch. 11 - On a very hot day, its possible to cook an egg on...Ch. 11 - Prob. 15CQCh. 11 - Star A has twice the radius and twice the absolute...Ch. 11 - Convert 3.50 103 cal to the equivalent number of...Ch. 11 - Prob. 2PCh. 11 - A 75-kg sprinter accelerates from rest to a speed...Ch. 11 - Prob. 4PCh. 11 - A persons basal metabolic rate (BMR) is the rate...Ch. 11 - The temperature of a silver bar rises by 10.0C...Ch. 11 - The highest recorded waterfall in the world is...Ch. 11 - An aluminum rod is 20.0 cm long at 20.0C and has a...Ch. 11 - Lake Erie contains roughly 4.00 1011 m3 of water....Ch. 11 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - A 1.5-kg copper block is given an initial speed of...Ch. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - What mass of water at 25.0C must be allowed to...Ch. 11 - Lead pellets, each of mass 1.00 g, are heated to...Ch. 11 - Prob. 19PCh. 11 - A large room in a house holds 975 kg of dry air at...Ch. 11 - Prob. 21PCh. 11 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 11 - A student drops two metallic objects into a 120-g...Ch. 11 - When a driver brakes an automobile, the friction...Ch. 11 - A Styrofoam cup holds 0.275 kg of water at 25.0C....Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - How much thermal energy is required to boil 2.00...Ch. 11 - A 75-g ice cube al 0C is placed in 825 g of water...Ch. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - A high-end gas stove usually has at least one...Ch. 11 - Prob. 38PCh. 11 - Steam at 100.C is added to ice at 0C. (a) Find the...Ch. 11 - The excess internal energy of metabolism is...Ch. 11 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 11 - A glass windowpane in a home is 0.62 cm thick and...Ch. 11 - A pond with a flat bottom has a surface area of...Ch. 11 - The thermal conductivities of human tissues vary...Ch. 11 - A steam pipe is covered with 1.50-cm-thick...Ch. 11 - The average thermal conductivity of the walls...Ch. 11 - Consider two cooking pots of the same dimensions,...Ch. 11 - A thermopane window consists of two glass panes,...Ch. 11 - A copper rod and an aluminum rod of equal diameter...Ch. 11 - A Styrofoam box has a surface area of 0.80 m and a...Ch. 11 - A rectangular glass window pane on a house has a...Ch. 11 - A granite ball of radius 2.00 m and emissivity...Ch. 11 - Measurements on two stars indicate that Star X has...Ch. 11 - The filament of a 75-W light bulb is at a...Ch. 11 - The bottom of a copper kettle has a 10.0-cm radius...Ch. 11 - A family comes home from a long vacation with...Ch. 11 - A 0.040.-kg ice cube floats in 0.200 kg of water...Ch. 11 - The surface area of an unclothed person is 1.50...Ch. 11 - A student measures the following data in a...Ch. 11 - Prob. 60APCh. 11 - A class of 10 students; taking an exam has a power...Ch. 11 - A class of 10 students taking an exam has a power...Ch. 11 - A bar of gold (Au) is in thermal contact with a...Ch. 11 - An iron plate is held against an iron, wheel so...Ch. 11 - Prob. 65APCh. 11 - Three liquids are at temperatures of 10C, 20C, and...Ch. 11 - Earths surface absorbs an average of about 960....Ch. 11 - A wood stove is used to heat a single room. The...Ch. 11 - Prob. 69APCh. 11 - Prob. 70APCh. 11 - The surface of the Sun has a temperature of about...Ch. 11 - The evaporation of perspiration is the primary...Ch. 11 - Prob. 73APCh. 11 - An ice-cube tray is filled with 75.0 g of water....Ch. 11 - An aluminum rod and an iron rod are joined end to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The rate at which a resting person converts food energy is called one’s basal metabolic rate (BMR). Assume that the resulting internal energy leaves a person’s body by radiation and convection of dry air. When you jog, most of the food energy you burn above your BMR becomes internalenergy that would raise your body temperature if it were not eliminated. Assume that evaporation of perspiration is the mechanism for eliminating this energy. Suppose a person is jogging for “maximum fat burning,” converting food energy at the rate 400 kcal/h above his BMR, and putting out energy by work at the rate 60.0 W. Assume that the heat of evaporation of water at body temperature is equal to its heat of vaporization at 100°C. (a) Determine the hourly rate at which water must evaporate from his skin. (b) When you metabolize fat, the hydrogen atoms in the fat molecule are transferred to oxygen to form water. Assume that metabolism of 1.00 g of fat generates 9.00 kcal of energy and produces 1.00 g of…arrow_forwardA solar hot-water-heating system consists of a hot-water tank and a solar panel. The tank is well insulated and has a time constant of 60 hr. The solar panel generates 2200 Btu/hr during the day, and the tank has a heat capacity of 3°F per thousand Btu. If the water in the tank is initially 105°F and the room temperature outside the tank is 81°F, what will be the temperature in the tank after 10 hr of sunlight? What is U(t), the rate of temperature change due to the solar heating panel? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. U(t)= °F/hr OB. U(t) is unknown. xample Get more help Clear all Check answerarrow_forwardIf mercury overflows, it’ll trigger an alarm in the lab. The teacher wants to keep the lab at exactly 16.37 ◦C. While the mercury alarm is in place. How long would a person of average body size (surface area of about 1.8 m2 and normal body temperature of 37◦C) have to spend in the lab which holds 2700 moles of air to trigger the mercury alarm? Side note: The maximum temperature the lab can heat the system to (to the thousandth of a degree Celsius) before the mercury overflows is 16.37◦C. Please show all work with equations that are used.arrow_forward
- A certain car has 14 L of coolant circulating at a temperature of 95 degrees Celsius through the engine’s cooling system. Assume that, in this normal condition, the coolant completely fills the 3.5 L volume of the aluminum radiator and the 10.5 L internal cavities within the aluminum engine. When a car overheats, the radiator, engine, and coolant expand and a small reservoir connected to the radiator catches any resultant coolant overflow. Estimate how much coolant overflows to the reservoir if the system goes from 95 degrees Celsius to 106 degrees Celsius. Model the radiator and engine as hollow shells of aluminum. The coefficient of volume expansion for coolant is 410x10^-6 degrees Celsiusarrow_forwardSANAE IV, a research station of The South African National Antarctic Programme (SANAP), is located on Vesleskarvet, Queen Maud Land. It uses an underground lake as the cold reservoir of a Carnot heat pump that maintains the temperature of a science lab at 302.8 K. To deposit 13488 J of heat in the lab, the heat pump requires 1022 J of work. Determine the temperature of water in the underground lake, in Kelvinarrow_forwardTwo evacuated bulbs are connected by a tube of negligible volume. The volume of one of the bulbs is twice that of the other. The larger volume bulb is placed in a 200K Isother constant-temperature bath and the other in a 300K bath, and then 1.00mol of an ideal me gas is injected into the system. Find the final number of moles of gas in each bulb.arrow_forward
- Six kilograms of liquid water at 0° C is put into the freezer compartment of a Carnot refrigerator. The temperature of the compartment is -15.3° C, and the temperature of the kitchen is 24.9° C. If the cost of electrical energy is ten cents per kilowatt · hour, how much does it cost to make two kilograms of ice at 0° C?arrow_forwardThe reaction rate for the prepupal development of male Drosophila is temperature-dependent. Assuming that the reaction rate is exponential as in R ∝ e−Ea/(kBT), the activation energy for this development is 3.41 × 10−19 J. A Drosophila is originally at 19.00°C, and its temperature is increasing. If the rate of development has increased 3.50%, how much has its temperature increased? The value of the Boltzmann constant is 1.381 × 10−23 J/Karrow_forwardIn an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200 W electric immersion heater in 0.400 kg of water. How much heat must be added to the water to raise its temperature from 21.0°C to 77.0°C? Express your answer in joules. IVE ΑΣΦ Q = Submit Part B t = Request Answer Submit How much time is required? Assume that all of the heater's power goes into heating the water. Express your answer in seconds. OF 15. ΑΣΦ ? Request Answer J ? S Rearrow_forward
- Total lung capacity of a typical adult is approximately 5.0 L. Approximately 20% of the air is oxygen. At sea level and at an average body temperature of 37°C, how many moles of oxygen do the lungs contain at the end of an inhalation?arrow_forwardAn airtight container with the piston at 696(kPa) pressure and 269(K) temperature. When 105 kJ heat is transferred, the piston moves up and the volume changes from 0.014 to 0.056 m°. Assuming ideal gas behavior, calculate a) the change in internal energy, b) the final temperature, and c) the heat capacity.arrow_forwardTwo rooms, each a cube 4.0m per side share a 14 Cm thick brick wall. Because of a number of 100 W light bulbs in one room the air is at 30 degree Celsius while in the other room it is 10 degree Celsius. How many of the 100 W bulbs are needed to maintain the temperature difference across the wall?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON