EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 3CP
Which bicyclist is more likely to go faster: one who keeps his head and his body in the most upright position or one who leans down and brings his body closer to his knees? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
• O O O
9:E1
docs.google.com/for O
Untitled Section
Determine the force P required to lower the 40-kg cylinder at a slow steady
speed. The coefficient or friction between the cord and its supporting surface
is 0.30. (g = 10 m/s).
40 kg
Your answer
If (u, = 0.4) then the o between the normal force N and the friction force F
will be
Your answer
العربية
الإنجليزية
A father lifts his child as shown in the Figure. What force should the upper leg muscle exert to lift the child at a constant speed?
A chair lift is to be installed from the surface down to a depth of 150 m. The inclination is 17 degrees to the horizontal. An operating velocity is to be used, and the system will be required to transport 300 persons per hour. Assuming the worst-case scenario, namely that no persons travel down while the system has a full load traveling up, determine:
1. the spacing of thr chairs
2. the traveling time per person
3. the output power of the motor required to drive the system
Perfomance criteria:
A force criteria:
A force of 2 kN per 100 m of the length of the loaded part of the system is required to overcome friction.
Mass per person: 70 kg
Overall mechanical efficiency: 85%
Chapter 11 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 11 - What is drag? What causes it? Why do we usually...Ch. 11 - Prob. 2CPCh. 11 - Which bicyclist is more likely to go faster: one...Ch. 11 - Prob. 4CPCh. 11 - Define the frontal area of a body subjected to...Ch. 11 - Define the planform area of a body subjected to...Ch. 11 - Prob. 7CPCh. 11 - What is the difference between streamlined and...Ch. 11 - Prob. 9CPCh. 11 - During flow over a given body, the drag force, the...
Ch. 11 - During flow over a given slender body such as a...Ch. 11 - What is terminal velocity? How is it determined?Ch. 11 - What is the difference between skin friction drag...Ch. 11 - What is the effect of surface roughness on the...Ch. 11 - Prob. 15CPCh. 11 - What is flow separation? What causes it? What is...Ch. 11 - Prob. 17CPCh. 11 - Consider laminar flow over a flat plate. How does...Ch. 11 - In general, how does the drag coefficient vary...Ch. 11 - Fairings are attached to the front and back of a...Ch. 11 - Prob. 21PCh. 11 - The resultant of the pressure and wall shear...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - A circular sign has a diameter of 50 cm and is...Ch. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - At highway speeds, about half of the power...Ch. 11 - A submarine can be treated as an ellipsoid with a...Ch. 11 - A 70-kg bicyclist is riding her 1 5-kg bicycle...Ch. 11 - A wind turbine with two or four hollow...Ch. 11 - During steady motion of a vehicle on a level road,...Ch. 11 - Prob. 37EPCh. 11 - A 0.80-m-diameter, 1 .2-rn-high garbage can is...Ch. 11 - An 8-mm-diameter plastic sphere whose density is...Ch. 11 - Prob. 40PCh. 11 - The drag coefficient of a vehicle increases when...Ch. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - During major windstorms, high vehicles such as RVs...Ch. 11 - What does the friction coefficient represent in...Ch. 11 - What fluid property is responsible for the...Ch. 11 - How is the average friction coefficient determined...Ch. 11 - Prob. 47EPCh. 11 - The local atmospheric pressure in Denver, Colorado...Ch. 11 - Prob. 50PCh. 11 - Prob. 51EPCh. 11 - Air at 25C and 1 atm is flowing over a long flat...Ch. 11 - Prob. 54PCh. 11 - During a winter day, wind at 70 km/h, 5C , and I...Ch. 11 - Prob. 56PCh. 11 - The forming section of a plastics plant puts out a...Ch. 11 - Prob. 58CPCh. 11 - Why is flow separation in flow over cylinders...Ch. 11 - Prob. 60CPCh. 11 - A 5-mm-diameter electrical transmission line is...Ch. 11 - A 1ong 5-cm-diameter steam pipe passes through...Ch. 11 - Consider 0.8-cm-diameter hail that is falling...Ch. 11 - Prob. 64EPCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67EPCh. 11 - One of the popular demonstrations in science...Ch. 11 - Prob. 69PCh. 11 - What is stall? What causes an airfoil to stall?...Ch. 11 - Prob. 71CPCh. 11 - Air is flowing past a symmetrical airfoil at zero...Ch. 11 - Both the lift and the drag of an airfoil increase...Ch. 11 - Prob. 74CPCh. 11 - Prob. 75CPCh. 11 - Air is flowing past a symmetrical airfoil at an...Ch. 11 - Prob. 77CPCh. 11 - Prob. 78CPCh. 11 - Prob. 79CPCh. 11 - Prob. 80CPCh. 11 - How do flaps affect the lift and the drag of...Ch. 11 - Prob. 82EPCh. 11 - Consider an aircraft that takes off at 260 km/h...Ch. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - A tennis ball with a mass of 57 and a diameter of...Ch. 11 - A small aircraft has a wing area of 40 m2, a lift...Ch. 11 - Prob. 89PCh. 11 - Consider a light plane that has a total weight of...Ch. 11 - A small airplane has a total mass of 1800 kg and a...Ch. 11 - An airplane has a mass of 48.000 k. a wins area of...Ch. 11 - Prob. 93EPCh. 11 - Prob. 94PCh. 11 - Prob. 95EPCh. 11 - A 2-zn-high, 4-zn-wide rectangular advertisement...Ch. 11 - 11-97 A plastic boat whose bottom surface can be...Ch. 11 - Prob. 99PCh. 11 - Prob. 100EPCh. 11 - A commercial airplane has a total mass of 150.000...Ch. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 107PCh. 11 - Prob. 108PCh. 11 - Prob. 109PCh. 11 - Prob. 110PCh. 11 - Prob. 111PCh. 11 - Prob. 113PCh. 11 - Prob. 115PCh. 11 - Prob. 116PCh. 11 - Prob. 117PCh. 11 - Prob. 118PCh. 11 - Prob. 119PCh. 11 - The region of flow trailing the body where the...Ch. 11 - Prob. 121PCh. 11 - Prob. 122PCh. 11 - Prob. 123PCh. 11 - Prob. 124PCh. 11 - Prob. 125PCh. 11 - Prob. 126PCh. 11 - An airplane has a total mass of 3.000kg and a wing...Ch. 11 - Prob. 128PCh. 11 - Write a report on the history of the reduction of...Ch. 11 - Write a report oil the flips used at the leading...Ch. 11 - Discuss how to calculate drag force a unsteady...Ch. 11 - Large commercial airplanes cruise at high...Ch. 11 - Many drivers turn off their air conditioners and...Ch. 11 - Consider the boundary layer growing on a flat...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 2-kg block travels from the top of a plane inclined 25° with the horizontal compressing a spring at the bottom of the incline with an initial speed of 0.65 m/s. Due to the motion of the block, the spring was compressed by 0.2 meters. The spring has ak of 100 N/m and the coefficient of friction between the block and the incline is 0.40. What is the change in Elastic Potential Energy of the block? O 9.5) O 2.0) O 8.8) O 1.1)arrow_forwardConsider a person who momentarily puts all of their body weight on one leg when walking or running. The forces acting on the leg and the corresponding biomechanical model of the system are shown in Fig.- Prob. 10(a) and (b). Point O corresponds to the center of rotation of the hip joint. A is the connection point of the hip abductor muscle with the femur; point B is the center of gravity of the leg; and C is the point of application of the ground reactive force. The distances between point A and points O, B, and C are: a = 8.6 cm, b = 34.3 cm, and c = 89.4 cm. The angles formed by the femoral neck and the longitudinal axis of the femur with respect to the horizontal are alpha = 43° and beta = 79°, respectively. Furthermore, for this position of the person standing on one leg, it has been estimated that the magnitude of the force exerted by the hip abductor muscle is FM = 2062.6 N and its line of action forms an angle of theta = 69° with respect to the horizontal. If the magnitude of…arrow_forwardWhat power is required (at the wheels) for a 1400 kg automobile to climb a 4% grade at a constant speed 30 m/s while it is opposed by drag and rolling resistance forces totaling 500 N?arrow_forward
- To climb a 400 meter high mountain, you have two options, a straight line route with a 40 ° slope or a route composed of 5 equal sections (same length) each with a 20 ° slope. If traveling in a car with a mass of 1280 kg and a maximum power of 88 kW, Determine (assume the whole car as a particle): a) Is the friction enough to prevent the car from sliding? The coefficient of static friction of the tires with the ground is 0.95. b) What is the power required to climb the 40 ° slope at a constant speed of 40 km / h? Does the car have enough power to go up at that speed? c) What is the constant speed at which the 40 ° slope can be climbed with a 60 kW power? d) What is the power required to climb a 20 ° slope at 40 km/h? Does the car has enough power to go up at that speed? e) In which of the two trajectories does the car do more work? Ignore the resistance of the air and rolling resistance and radius of curves between sections of the compound route. Please add the free body diagram.arrow_forwardRounding off only in Final answer solve and explain!arrow_forwardFor Belt Friction, why it's possible to increase the tension in one side while maintaining the tension in the other side constant,; all while rope doesn't slip in the process? O because kinetic friction acting against the tension decreases up to a certain limit O because static friction acting against the tension increases up to a certain limit because kinetic friction acting against the tension increases up to a certain limit O because static friction acting against the tension decreases up to a certain limitarrow_forward
- Question 3 of 7 > -/2 E View Policies Current Attempt in Progress The initially stationary 17-kg block is subjected to the time-varying force whose magnitude P is shown in the plot. The 37° angle remains constant. Determine the block speed at (a) t = 1.7 s and (b) t = 5.7 s. 144 17 kg 37 SH = 0.57 H = 0.44 6.5 t. s Answers: (a) At t = 1.7 s, v= i m/s (b) At t = 5.7 s, v= i m/sarrow_forwardPlease atleast answer this questionarrow_forward6. A 2 kg block is pushed against a spring with spring constant k = 400 N/m, compressing it 22 cm. It is then released from rest, and the spring pushes the block to the right. The block leaves the spring when the spring has returned to its rest length. The block then moves along a frictionless horizontal surface and then up a frictionless incline with slope 37º. k = 400 N/m www -0.220 m m = 2.00 kg a.) What is the energy stored in the spring when the spring is compressed? b.) What is the velocity of the block when it leaves the spring? c.) How far does the block travel up the incline (vertical height) before it comes to a stop and then starts back down the incline? 37.0⁰arrow_forward
- During terrible weather at a ski-flying world championship, a ski jumper tried to adjust for bad conditions midway down the ramp but completely lost control and tumbled wildly off the side at its bottom into a scattering crowd. The 73-kg jumper left the ramp about 45 m lower than his starting position. The drag force is more important than the frictional force in bringing the ski jumper to rest. (True/False) answerarrow_forwardCar A, with ma = 1800 kg , is stopped at a red light. Car B, with mg = 2300 kg and a speed of v = 38 km/h , fails to stop before impacting car A. After impact, cars A and B slide over the pavement with a coefficient of friction uz. = 0.3. Take g = 9.81 m/s?. (Figure 1) Figure 1 of 1 114427 BFrancola Lepeintrearrow_forwardA 3.00 kg block is pushed against a spring with negligible mass and force constant k = 500 N/m, compressing it x = 0.31 m. When the block is released, it moves along a frictionless horizontal surface, and then up the block as it slides along the horizontal surface after having left the spring? (b) How far does the block travel up the incline before starting to slide back down? (c) Suppose instead that there is friction uk travels l goes up the incline changed? frictionless ramp with slope 0 30°. (a) What is the speed of =0.10 along the horizontal surface only (still no friction on the incline). If the block 3 m along the horizontal surface before starting up the incline, how is the distance itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY