EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 128P
To determine
The minimum safe speed for takeoff and landing while extending the flaps.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An airplane has a total mass of 35,000 kg and a wing planform area of 65 m2. The airplane is cruising at 10,000 m altitude with a velocity of 1100 km/h. The density of air on cruising altitude is 0.414 kg/m3. The lift coefficient of this airplane at the cruising altitude is (a) 0.273 (b) 0.290 (c) 0.456 (d ) 0.874 (e) 1.22
and power for part b
A rectangular wing on an aircraft has a chord length of 1.6 m and span of 11 m flying in sky at the speed of 195 km/ h. A total aerodynamic force of 21kN is experienced by the wing at that speed. Determine the lift coefficient of the wing, if the lift to drag ratio is 5. Also, determine the lift coefficient, if the ratio is considered to be 3 . Take the density of the air to be 1.23 kg/ m3 .
Chapter 11 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 11 - What is drag? What causes it? Why do we usually...Ch. 11 - Prob. 2CPCh. 11 - Which bicyclist is more likely to go faster: one...Ch. 11 - Prob. 4CPCh. 11 - Define the frontal area of a body subjected to...Ch. 11 - Define the planform area of a body subjected to...Ch. 11 - Prob. 7CPCh. 11 - What is the difference between streamlined and...Ch. 11 - Prob. 9CPCh. 11 - During flow over a given body, the drag force, the...
Ch. 11 - During flow over a given slender body such as a...Ch. 11 - What is terminal velocity? How is it determined?Ch. 11 - What is the difference between skin friction drag...Ch. 11 - What is the effect of surface roughness on the...Ch. 11 - Prob. 15CPCh. 11 - What is flow separation? What causes it? What is...Ch. 11 - Prob. 17CPCh. 11 - Consider laminar flow over a flat plate. How does...Ch. 11 - In general, how does the drag coefficient vary...Ch. 11 - Fairings are attached to the front and back of a...Ch. 11 - Prob. 21PCh. 11 - The resultant of the pressure and wall shear...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - A circular sign has a diameter of 50 cm and is...Ch. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - At highway speeds, about half of the power...Ch. 11 - A submarine can be treated as an ellipsoid with a...Ch. 11 - A 70-kg bicyclist is riding her 1 5-kg bicycle...Ch. 11 - A wind turbine with two or four hollow...Ch. 11 - During steady motion of a vehicle on a level road,...Ch. 11 - Prob. 37EPCh. 11 - A 0.80-m-diameter, 1 .2-rn-high garbage can is...Ch. 11 - An 8-mm-diameter plastic sphere whose density is...Ch. 11 - Prob. 40PCh. 11 - The drag coefficient of a vehicle increases when...Ch. 11 - To reduce the drag coefficient and thus to improve...Ch. 11 - During major windstorms, high vehicles such as RVs...Ch. 11 - What does the friction coefficient represent in...Ch. 11 - What fluid property is responsible for the...Ch. 11 - How is the average friction coefficient determined...Ch. 11 - Prob. 47EPCh. 11 - The local atmospheric pressure in Denver, Colorado...Ch. 11 - Prob. 50PCh. 11 - Prob. 51EPCh. 11 - Air at 25C and 1 atm is flowing over a long flat...Ch. 11 - Prob. 54PCh. 11 - During a winter day, wind at 70 km/h, 5C , and I...Ch. 11 - Prob. 56PCh. 11 - The forming section of a plastics plant puts out a...Ch. 11 - Prob. 58CPCh. 11 - Why is flow separation in flow over cylinders...Ch. 11 - Prob. 60CPCh. 11 - A 5-mm-diameter electrical transmission line is...Ch. 11 - A 1ong 5-cm-diameter steam pipe passes through...Ch. 11 - Consider 0.8-cm-diameter hail that is falling...Ch. 11 - Prob. 64EPCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67EPCh. 11 - One of the popular demonstrations in science...Ch. 11 - Prob. 69PCh. 11 - What is stall? What causes an airfoil to stall?...Ch. 11 - Prob. 71CPCh. 11 - Air is flowing past a symmetrical airfoil at zero...Ch. 11 - Both the lift and the drag of an airfoil increase...Ch. 11 - Prob. 74CPCh. 11 - Prob. 75CPCh. 11 - Air is flowing past a symmetrical airfoil at an...Ch. 11 - Prob. 77CPCh. 11 - Prob. 78CPCh. 11 - Prob. 79CPCh. 11 - Prob. 80CPCh. 11 - How do flaps affect the lift and the drag of...Ch. 11 - Prob. 82EPCh. 11 - Consider an aircraft that takes off at 260 km/h...Ch. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - A tennis ball with a mass of 57 and a diameter of...Ch. 11 - A small aircraft has a wing area of 40 m2, a lift...Ch. 11 - Prob. 89PCh. 11 - Consider a light plane that has a total weight of...Ch. 11 - A small airplane has a total mass of 1800 kg and a...Ch. 11 - An airplane has a mass of 48.000 k. a wins area of...Ch. 11 - Prob. 93EPCh. 11 - Prob. 94PCh. 11 - Prob. 95EPCh. 11 - A 2-zn-high, 4-zn-wide rectangular advertisement...Ch. 11 - 11-97 A plastic boat whose bottom surface can be...Ch. 11 - Prob. 99PCh. 11 - Prob. 100EPCh. 11 - A commercial airplane has a total mass of 150.000...Ch. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 107PCh. 11 - Prob. 108PCh. 11 - Prob. 109PCh. 11 - Prob. 110PCh. 11 - Prob. 111PCh. 11 - Prob. 113PCh. 11 - Prob. 115PCh. 11 - Prob. 116PCh. 11 - Prob. 117PCh. 11 - Prob. 118PCh. 11 - Prob. 119PCh. 11 - The region of flow trailing the body where the...Ch. 11 - Prob. 121PCh. 11 - Prob. 122PCh. 11 - Prob. 123PCh. 11 - Prob. 124PCh. 11 - Prob. 125PCh. 11 - Prob. 126PCh. 11 - An airplane has a total mass of 3.000kg and a wing...Ch. 11 - Prob. 128PCh. 11 - Write a report on the history of the reduction of...Ch. 11 - Write a report oil the flips used at the leading...Ch. 11 - Discuss how to calculate drag force a unsteady...Ch. 11 - Large commercial airplanes cruise at high...Ch. 11 - Many drivers turn off their air conditioners and...Ch. 11 - Consider the boundary layer growing on a flat...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. A truck has a drag coefficient based on frontal area of CD = 0.86. The truck has a mass of 12,750 kg and a frontal area of 10.5 m2. If the truck is traveling at constant speed on a level road, the forces retarding its forward progress are the drag and the rolling friction. The force due to rolling friction can be written as Fit Wfr(1+ V V₁ where V is the truck speed in m/s, Vo = 30 m/s and fr (the coefficient of rolling resistance) is approximately 0.008 for a truck on concrete or asphalt. Plot the total power the engine must supply as a function of truck speed, V. Comment on the relative importance of drag and rolling friction in the fuel consumption of the truck.arrow_forwardA commercial airplane has a total mass of 150,000 lbm and a wing planform area of 1700 ft2. The plane has a cruising speed of 625 mi/h and a cruising altitude of 38,000 ft where the air density is 0.0208 lbm/ft3. The plane has double-slotted flaps for use during takeoff and landing, but it cruises with all flaps retracted. Assuming the lift and drag characteristics of the wings can be approximated by NACA 23012, determine (a) the minimum safe speed for takeoff and landing with and without extending the flaps, (b) the angle of attack to cruise steadily at the cruising altitude, and (c) the power that needs to be supplied to provide enough thrust to overcome drag. Take the air density on the ground to be 0.075 lbm/ft3.arrow_forwardA 17,000-kg tractor-trailer rig has a frontal area of 9.2 m2, a drag coefficient of 0.96, a rolling resistance coefficient of 0.05 (multiplying the weight of a vehicle by the rolling resistance coefficient gives the rolling resistance), a bearing friction resistance of 350 N, and a maximum speed of 110 km/h on a level road during steady cruising in calm weather with an air density of 1.25 kg/m3. Now a fairing is installed to the front of the rig to suppress separation and to streamline the flow to the top surface, and the drag coefficient is reduced to 0.76. Determine the maximum speed of the rig with the fairing.arrow_forward
- A 0.25 kg kite with an area of 0.65 mitres squared flies in a 25 km/h wind such that the weightless string makes an angle of 40° relative to the horizontal.The density of air is 1.22 kg/m^3.if the pull on string is 7 N.determine the lift and drag coefficient basee on the kite areaarrow_forwardsolve itarrow_forwardCalculate the frontal area of a parachute of hemi-spherical shape which will allow aparachutejumper of weight 90 kg to descend with a steady velocity of 8 m/s ignoring air movement.The drag coefficient of parachute as determined from experiments is 1.5. Take the densityof air as 1.2 kg/m3arrow_forward
- A jet airplane weighs 160,000 N and has a zero-lift drag coefficient of 0.008 and a wing area of 42 m2. At 100 m/s at sea level, the rate of climb is 11.5 m/s. The thrust developed by the engines is equal to 27,000 N. Determine the maximum rate of climb and the corresponding flight speed at sea level . [Answer: 21.6013 m/s and 214.5577 m/s]arrow_forwardAn airplane is cruising at a velocity of 950 km/h in air whose density is 0.526 kg/m3. The airplane has a wing planform area of 90 m2. The lift and drag coefficients on cruising conditions are estimated to be 2.0 and 0.06, respectively. The power that needs to be supplied to provide enough trust to overcome wing drag is (a) 21,500 kW (b) 19,300 kW (c) 23,600 kW (d ) 25,200 kW (e) 26,100 kWarrow_forwarddescend with a steady velocity of 8 m/s ignoring air movement. The drag coefficient of parachute as determined from experiments is 1.5. Take the density of air as 1.2 kg/m³. O 7.5 square meters 9.6 square meters O 14.7 square meters O 15.3 square metersarrow_forward
- A light combat aircraft weighs 75,000 N and has a wing area of 27 m?. The maximum lift coefficient with high-lift devices is 1.8, and the structural limit load factor is 6.0. While flying at 250 km/h, the aircraft makes a 90 deg turn in 8 s at sea level holding a constant altitude and at an angle of attack such that the lift-to-drag ratio is 8.0. Find (a) the bank angle, (b) load factor, (c) radius of turn, and (d) the thrust required. [Answer: (a) µ = 54.26 deg, (b) n = 1.7120, (c) R %3D 353.7665 m, and (d) T = 16,050 N.)arrow_forwardHow important is the study of aerodynamics in designing an aircraft and the effect on performance?arrow_forwardA commercial airplane has a total mass of 70,000 kg and a wing planform area of 150 m2. The plane has a cruising speed of 558 km/h and a cruising altitude of 12,000 m, where the air density is 0.312 kg/m3. The plane has double-slotted flaps for use during takeoff and landing, but it cruises with all flaps retracted. Assuming the lift and the drag characteristics of the wings can be approximated by NACA 23012 , determine (a) the minimum safe speed for takeoff and landing with and without extending the flaps, (b) the angle of attack to cruise steadily at the cruising altitude, and (c) the power that needs to be supplied to provide enough thrust to overcome wing drag.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY