College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 27CQ
When you put an ice cube tray filled with liquid water in your freezer, the water eventually becomes solid ice. The solid is more ordered than the liquid—it has less entropy. Explain how this transformation is possible without violating the second law of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 11 - Rub your hands together vigorously. What happens?...Ch. 11 - Describe the energy transfers and transformations...Ch. 11 - According to Table 11.4, cycling at 15 km/h...Ch. 11 - Prob. 4CQCh. 11 - For most automobiles, the number of miles per...Ch. 11 - A glassblower heats up a blob of glass in a...Ch. 11 - When the space shuttle returns to earth, its...Ch. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - A 20 kg block of steel at 23C and a 150 g piece of...
Ch. 11 - Prob. 11CQCh. 11 - For Questions 12 through 17, give a specific...Ch. 11 - For Questions 12 through 17, give a specific...Ch. 11 - For Questions 12 through 17, give a specific...Ch. 11 - For Questions 12 through 17, give a specific...Ch. 11 - For Questions 12 through 17, give a specific...Ch. 11 - For Questions 12 through 17, give a specific...Ch. 11 - A fire pistonan impressive physics...Ch. 11 - Prob. 19CQCh. 11 - A drop of green ink falls into a beaker of clear...Ch. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - According to the second law of thermodynamics, it...Ch. 11 - Assuming improved materials and better processes,...Ch. 11 - Electric vehicles increase speed by using an...Ch. 11 - When the suns light hits the earth, the...Ch. 11 - When you put an ice cube tray filled with liquid...Ch. 11 - Prob. 28CQCh. 11 - A person is walking on level ground at constant...Ch. 11 - A person walks 1 km, turns around, and runs back...Ch. 11 - Prob. 31MCQCh. 11 - 200 J of heat is added to two gases, each in a...Ch. 11 - An inventor approaches you with a device that he...Ch. 11 - Prob. 34MCQCh. 11 - Prob. 35MCQCh. 11 - A refrigerators freezer compartment is set at 10C;...Ch. 11 - A 10% efficient engine accelerates a 1500 kg car...Ch. 11 - Prob. 2PCh. 11 - A typical photovoltaic cell delivers 4.0 103 W of...Ch. 11 - Prob. 4PCh. 11 - A fast-food hamburger (with cheese and bacon)...Ch. 11 - In an average human, basic life processes require...Ch. 11 - An energy bar contains 6.0 g of fat. How much...Ch. 11 - An energy bar contains 22 g of carbohydrates. How...Ch. 11 - Prob. 9PCh. 11 - An energy bar contains 22 g of carbohydrates. If...Ch. 11 - Suppose your body was able to use the chemical...Ch. 11 - The label on a candy bar says 400 Calories....Ch. 11 - A weightlifter curls a 30 kg bar, raising it each...Ch. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - The planet Mercurys surface temperature varies...Ch. 11 - A piece of metal at 100C has its Celsius...Ch. 11 - Prob. 18PCh. 11 - 500 J of work are done on a system in a process...Ch. 11 - 600 J of heat energy are transferred to a system...Ch. 11 - 300 J of energy are transferred to a system in the...Ch. 11 - 10 J of heat are removed from a gas sample while...Ch. 11 - A heat engine extracts 55 kJ from the hot...Ch. 11 - A heat engine does 20 J of work while exhausting...Ch. 11 - A heat engine does 200 J of work while exhausting...Ch. 11 - A heat engine with an efficiency of 40% does 100 J...Ch. 11 - A power plant running at 35% efficiency generates...Ch. 11 - A heat engine operating between energy reservoirs...Ch. 11 - A newly proposed device for generating electricity...Ch. 11 - Converting sunlight to electricity with solar...Ch. 11 - A refrigerator takes in 20 J of work and exhausts...Ch. 11 - Air conditioners are rated by their coefficient of...Ch. 11 - 50 J of work are done on a refrigerator with a...Ch. 11 - Find the maximum possible coefficient of...Ch. 11 - Which, if any, of the heat engines in Figure...Ch. 11 - Which, if any, of the refrigerators in Figure...Ch. 11 - Prob. 37PCh. 11 - Prob. 38GPCh. 11 - Prob. 39GPCh. 11 - For how long would a 68 kg athlete have to swim at...Ch. 11 - a. How much metabolic energy is required for a 68...Ch. 11 - Prob. 42GPCh. 11 - Prob. 43GPCh. 11 - The record time for a Tour de France cyclist to...Ch. 11 - Championship swimmers take about 22 s and about 30...Ch. 11 - A 68 kg hiker walks at 5.0 km/h up a 7% slope....Ch. 11 - A 70 kg student consumes 2500 Cal each day and...Ch. 11 - To make your workouts more productive, you can get...Ch. 11 - The resistance of an exercise bike is often...Ch. 11 - Prob. 50GPCh. 11 - Prob. 51GPCh. 11 - A large horse can perform work at a steady rate of...Ch. 11 - A heat engine with a high-temperature reservoir at...Ch. 11 - An engine does 10 J of work and exhausts 15 J of...Ch. 11 - The heat exhausted to the cold reservoir of an...Ch. 11 - An engine operating at maximum theoretical...Ch. 11 - Some heat engines can run on very small...Ch. 11 - The coefficient of performance of a refrigerator...Ch. 11 - An engineer claims to have measured the...Ch. 11 - A 32% efficient electric power plant produces 900...Ch. 11 - A typical coal-fired power plant burns 300 metric...Ch. 11 - Each second, a nuclear power plant generates 2000...Ch. 11 - Prob. 63GPCh. 11 - Prob. 64GPCh. 11 - Air conditioners sold in the United States are...Ch. 11 - The surface waters of tropical oceans are at a...Ch. 11 - The light energy that falls on a square meter of...Ch. 11 - MCAT-Style Passage Problems Kangaroo Locomotion...Ch. 11 - MCAT-Style Passage Problems Kangaroo Locomotion...Ch. 11 - MCAT-Style Passage Problems Kangaroo Locomotion...Ch. 11 - MCAT-Style Passage Problems Kangaroo Locomotion...Ch. 11 - MCAT-Style Passage Problems Kangaroo Locomotion...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Particles of light have no mass. Does the Sun’s mass change as a result of all the light it emits? Explain.
Modern Physics
1. When is energy most evident?
Conceptual Physics (12th Edition)
In a chase scene, a movie stuntman runs horizontally off the flat roof of one building and lands on another roo...
Essential University Physics: Volume 1 (3rd Edition)
Explain why at high frequencies a capacitor acts as an ac short, whereas an inductor acts as an open circuit.
University Physics Volume 2
Choose the best answer to each of the following. Explain your reasoning. Kepler made a major break from ancient...
Cosmic Perspective Fundamentals
Choose the best answer to each of the following. Explain your reasoning. The asteroid belt lies between the orb...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Of the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work, (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs, (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system, (d) The entropy of the Universe increases in all natural processes, (e) Energy will not spontaneously transfer by heat from a cold object to a hot object.arrow_forward(a) What is the change in entropy if you start with 100 coins in the 45 heads and 55 tails macrostate, toss them, and get 51 heads and 49 tails? (b) What if you get 75 heads and 25 tails? (c) How much more likely is 51 heads and 49 tails than 75 heads and 25 tails? (d) Dues either outcome violate the second law of thermodynamics?arrow_forward(a) What is the change in entropy if you start with 10 coins in the 5 heads and 5 tails macrostate, toss them, and get 2 heads and 8 tails? (b) How much more likely is 5 heads and 5 tails than 2 heads and 8 tails? (Take the ratio of the number of microstates to find out.) (c) If you were betting on 2 heads and 8 tails would you accept odds of 252 to 45? Explain Why or why not. Table 15.5 10Coin Toss MacrostateNumber of Microstates (W) Heads Tails 10 0 1 9 1 10 8 2 45 7 3 120 6 4 210 5 5 252 4 6 210 3 7 120 2 8 45 1 9 10 0 10 1 Total: 1024arrow_forward
- (a) On a winter day, a certain house loses 5.00108J of heat to the outside (about 500,000 Btu). What is the total change in entropy due to this heat transfer alone, assuming an average indoor temperature of 21.0C and an average outdoor temperature of 5.00C ? (b) This large change in entropy implies a large amount of energy has become unavailable to do work. Where do we find more energy when such energy is lost to us?arrow_forwardGive an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system's entropy in this process?arrow_forward(a) How much heat transfer occurs from 20.0 kg of 90.0C water placed in contact with 20.0 kg of 10.0C water, producing a final temperature of 50.0C ? (b) How much work could a Carnot engine do with this heat transfer, assuming it operates between two reservoirs at constant temperatures of 90.0C and 10.0C ? (c) What increase in entropy is produced by mixing 20.0 kg of 90.0C water with 20.0 kg of 10.0C water? (d) Calculate the amount of work made unavailable by this mixing using a low temperature of 10.0C, and compare it with the work done by the Garnet engine. Explicitly show how you follow the steps in the Problem-Solving Strategies for Entropy. (e) Discuss how everyday processes make increasingly more energy unavailable to do work, as implied by this problem.arrow_forward
- A 65-g ice cube is initially at 0.0C. (a) Find the change in entropy of the cube after it melts completely at 0.0C. (b) What is the change in entropy of the environment in this process? Hint: The latent heat of fusion for water is 3.33 105 J/kg.arrow_forwardAn ideal gas is taken from an initial temperature Ti to a higher final temperature Tf along two different reversible paths. Path A is at constant pressure, and path B is at constant volume. What is the relation between the entropy changes of the gas for these paths? (a) SA SB (b) SA = SB (c) SA SBarrow_forwardA sealed container holding 0.500 kg of liquid nitrogen at its boiling point of 77.3 K is placed in a large room at 21.0C. Energy is transferred from the room to the nitrogen as the liquid nitrogen boils into a gas and then warms to the rooms temperature. (a) Assuming the rooms temperature remains essentially unchanged at 21.0C, calculate the energy transferred from the room to the nitrogen. (b) Estimate the change in entropy of the room. Liquid nitrogen has a latent heat of vaporization of 2.01 105 J/kg. The specific heat of N2 gas at constant pressure is CN2 = 1.04 103J/kg K.arrow_forward
- Assume a sample of an ideal gas is at room temperature. What action will necessarily make the entropy of the sample increase? (a) Transfer energy into it by heat. (b) Transfer energy into it irreversibly by heat. (c) Do work on it. (d) Increase either its temperature or its volume, without letting the other variable decrease. (e) None of those choices is correct.arrow_forwardA sample of a monatomic ideal gas is contained in a cylinder with a piston. Its state is represented by the dot in the PV diagram shown in Figure OQ18.9. Arrows A through E represent isobaric, isothermal, adiabatic, and isovolumetric processes that the sample can undergo. In each process except D, the volume changes by a factor of 2. All five processes are reversible. Rank the processes according to the change in entropy of the gas from the largest positive value to the largest-magnitude negative value. In your rankings, display any cases of equality. Figure OQ18.9arrow_forwardWhat is the change in entropy in an adiabatic process? Does this imply that adiabatic processes are reversible? Can a process be precisely adiabatic for a macroscopic system?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY