(a)
Interpretation:
Initial
Concept Introduction:
The relationship between rate and initial concentration of reactant is described by rate law. It is an experimentally determined equation and cannot be found out theoretically from the stoichiometry of the reactants and products.
Where,
(b)
Interpretation:
The change in the rate of disappearance of
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The relation between rate law and the concentration of
Concept Introduction:
(d)
Interpretation:
The effect of initial concentration of
Concept Introduction:
Consider the following reaction.
Where
Where,
Rate of the reaction can be expressed in terms of change in concentration of reactant and products by multiplying the reciprocal of the corresponding stoichiometric co-efficient to that.
When the rate is expressed in terms of change in reactant concentration, a minus sign has to be given. Since change in time will be a positive quantity and reactant concentration decreases with time change in concentration of reactant will be negative. So in order to make the rate a positive quantity negative sign is given.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Bundle: Chemistry: The Molecular Science, 5th, Loose-Leaf + OWLv2 with Quick Prep 24-Months Printed Access Card
- this is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward2B: The retrosynthetic cut below provides two options for a Suzuki coupling, provide the identities of A, B, C and D then identify which pairing is better and justify your choice. O₂N. Retro-Suzuki NO2 MeO OMe A + B OR C + Darrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- A buffered solution containing dissolved aniline, CH,NH2, and aniline hydrochloride, CH, NH, Cl, has a pH of 5.41. Determine the concentration of CH, NH in the solution if the concentration of CH, NH, is 0.305 M. The pK of aniline is 9.13. [CHẠNH] = Calculate the change in pH of the solution, ApH, if 0.375 g NaOH is added to the buffer for a final volume of 1.40 L. Assume that any contribution of NaOH to the volume is negligible. ApH = Marrow_forwardShow work. don't give Ai generated solutionarrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning