EBK PRINCIPLES OF ELECTRIC CIRCUITS
10th Edition
ISBN: 9780134879499
Author: Buchla
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Solve problems 5.2 in detail and thank you
5.1 Determine the three zone settings for the relay Rab in the system shown in Figure 5.26. The
system nominal voltage is 138 kV, and the positive sequence impedances for the various
elements are given in the figure. The transformer impedance is given in ohms as viewed
from the 138 kV side. Assume that the maximum load at the relay site is 120 MVA, and
select a CT ratio accordingly. The available distance relay has zone 1 and zone 2 settings
from 0.2 to 10 2, and zone 3 settings from 0.5 to 40 2, in increments of 0.1 2. The angle
of maximum torque can be adjusted to 75° or 80°. Remember that the zone 3 of the relay
must back up the line BC, as well as the transformer.
A
Rab
(3+j40)
B
(2+ j50)
(0+j9)
с
Fu
D
Figure 5.26 System for problem 5.1
Please solve question 4.7 in detail and thank you
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve in detail to understandarrow_forwardE2.6 Consider the following neural network. Input Sat. Linear Layer Linear Layer purelin(Wa+b) Sketch the following responses (plot the indicated variable versus p for (-3arrow_forwardE2.3 Given a two-input neuron with the following weight matrix and input vector: w=[32] and p = [-5 7], we would like to have an output of 0.5. Do you suppose that there is a combination of bias and transfer function that might allow this? i. Is there a transfer function from Table 2.1 that will do the job if the bias is zero? ii. Is there a bias that will do the job if the linear transfer function is used? If yes, what is it? iii. Is there a bias that will do the job if a log-sigmoid transfer function is used? Again, if yes, what is it? iv. Is there a bias that will do the job if a symmetrical hard limit transfer function is used? Again, if yes, what is it?arrow_forwardE2.2 Consider a single-input neuron with a bias. We would like the output to be -1 for inputs less than 3 and +1 for inputs greater than or equal to 3. i. What kind of a transfer function is required? ii. What bias would you suggest? Is your bias in any way related to the input weight? If yes, how? iii. Summarize your network by naming the transfer function and stating the bias and the weight. Draw a diagram of the network.arrow_forwardE2.1 A single input neuron has a weight of 1.3 and a bias of 3.0. What possible kinds of transfer functions, from Table 2.1, could this neuron have, if its output is given below. In each case, give the value of the input that would produce these outputs. i. 1.6 ii. 1.0 iii. 0.9963 iv. -1.0arrow_forwardQ2. The slew rate of an amplifier can cause signal distortion at its output if wrongly chosen. State the criterion for selecting the slew rate of an amplifier to avoid signal distortion. A step signal of 5 mV is applied to an inverting amplifier shown in Figure 2, which has a slew rate of 0.05 V/us. Estimate the time required for the output voltage of the amplifier to reach within 10% of its final value. If the input to Figure 2 is a sinusoidal signal of 0.02 sin(2πft) V, determine the maximum frequency that can be applied to the circuit without causing signal distortion due to the limitation of its slew rate (0.05 V/µs). In order to minimise the output offset voltage of Figure 2, a compensating resistor should be added to Figure 2. Draw a modified circuit diagram that includes the compensating resistor. Determine the appropriate value for the compensating resistor. V₁ 2 ΚΩ 100 ΚΩ +arrow_forwardQ3) A single-phase semiconverter, shown in Fig.(3), is used to control the speed of small separately excited d.c. motor rated at 4.5 kW, 220V, 1500 rpm. The converter is connected to a single phase 230 V, 50 Hz supply. The armature resistance is Ra = 0.50 ohm and the armature circuit inductance is La 10 mH. The motor voltage constant is Ke D = 0.1 V/rpm. With the converter operates as a rectifier, the d.c. motor runs at 1200 rpm and carries an armature current of 16 A Assume that the motor current is continuous and ripple-free == (a) Draw and drive an equation for output voltage of semiconverter (b) The firing angle a. (c) The power delivered to the motor. (d) The supply power factor. R₂ FWD Thi Th₂ D. D FWD ep Fig.(3) Da ectearrow_forwardQ3) A single-phase semiconverter, shown in Fig.(3), is used to control the speed of small separately excited d.c. motor rated at 4.5 kW, 220V, 1500 rpm. The converter is connected to a single phase 230 V, 50 Hz supply. The armature resistance is Ra = 0.50 ohm and the armature circuit inductance is La = 10 mH. The motor voltage constant is Ke Q=0.1 V/rpm. With the converter operates as a rectifier, the d.c. motor runs at 1200 rpm and carries an armature current of 16 A Assume that the motor current is continuous and ripple-free (a) Draw and drive an equation for output voltage of semiconverter (b) The firing angle a. (c) The power delivered to the motor. (d) The supply power factor. R FWD Th₁ Th₂ D. D FWD ep Fig.(3) Da ectearrow_forwardE2.4 A two-layer neural network is to have four inputs and six outputs. The range of the outputs is to be continuous between 0 and 1. What can you tell about the network architecture? Specifically: i. How many neurons are required in each layer? ii. What are the dimensions of the first-layer and second-layer weight matrices? iii. What kinds of transfer functions can be used in each layer? iv. Are biases required in either layer?arrow_forwardE2.5 Consider the following neuron. Input General Neuron ΣΠ Sketch the neuron response (plot a versus p for -2arrow_forwardQ1. All transistors shown in Figure 1 are identical. They have the following properties: ẞ = 200, VT = 0.026 V and VBE = 0.7 V. In order to set the bias current of the differential amplifier to I = 1.8 mA (see Figure 1), determine the value of the resistor, R. Determine the DC output voltage at the output terminals V01 and V02. The input signal to the differential amplifier is given as (v1 - Viz) = 12 sin(wt) mV, determine the total output voltage at terminal vo1. Explain how to eliminate the DC voltage at the output terminal, V01. Sketch a circuit diagram that can fulfil this requirement. R +20 V 20 ΚΩ Vil V02 ના 50711 20 ΚΩ I = 1.8 mA Vizarrow_forwarda. An amplifier has a gain of 500. What is the dB gain? b. A three-stage amplifier system has dB gains of 15 dB, 32 dB, and 6 dB. What is the overall gain of the system in dB?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningPower System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningPower System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
What is the Difference Between Single Phase and Three Phase???; Author: Electrician U;https://www.youtube.com/watch?v=FEydcr4wJw0;License: Standard Youtube License