Q1. All transistors shown in Figure 1 are identical. They have the following properties: ẞ = 200, VT = 0.026 V and VBE = 0.7 V. In order to set the bias current of the differential amplifier to I = 1.8 mA (see Figure 1), determine the value of the resistor, R. Determine the DC output voltage at the output terminals V01 and V02. The input signal to the differential amplifier is given as (v1 - Viz) = 12 sin(wt) mV, determine the total output voltage at terminal vo1. Explain how to eliminate the DC voltage at the output terminal, V01. Sketch a circuit diagram that can fulfil this requirement. R +20 V 20 ΚΩ Vil V02 ના 50711 20 ΚΩ I = 1.8 mA Viz
Q1. All transistors shown in Figure 1 are identical. They have the following properties: ẞ = 200, VT = 0.026 V and VBE = 0.7 V. In order to set the bias current of the differential amplifier to I = 1.8 mA (see Figure 1), determine the value of the resistor, R. Determine the DC output voltage at the output terminals V01 and V02. The input signal to the differential amplifier is given as (v1 - Viz) = 12 sin(wt) mV, determine the total output voltage at terminal vo1. Explain how to eliminate the DC voltage at the output terminal, V01. Sketch a circuit diagram that can fulfil this requirement. R +20 V 20 ΚΩ Vil V02 ના 50711 20 ΚΩ I = 1.8 mA Viz
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Question
![Q1. All transistors shown in Figure 1 are identical. They have the following
properties: ẞ = 200, VT = 0.026 V and VBE = 0.7 V.
In order to set the bias current of the differential amplifier to I =
1.8 mA (see Figure 1), determine the value of the resistor, R.
Determine the DC output voltage at the output terminals V01 and
V02.
The input signal to the differential amplifier is given as (v1 - Viz) =
12 sin(wt) mV, determine the total output voltage at terminal vo1.
Explain how to eliminate the DC voltage at the output terminal, V01.
Sketch a circuit diagram that can fulfil this requirement.
R
+20 V
20 ΚΩ
Vil
V02
ના
50711
20 ΚΩ
I = 1.8 mA
Viz](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9e9f3fbc-f178-4c10-833f-0c2a76ea4b0d%2F1b00b4f2-301a-4dc7-91bd-f46743acd84a%2F88kpvq4_processed.png&w=3840&q=75)
Transcribed Image Text:Q1. All transistors shown in Figure 1 are identical. They have the following
properties: ẞ = 200, VT = 0.026 V and VBE = 0.7 V.
In order to set the bias current of the differential amplifier to I =
1.8 mA (see Figure 1), determine the value of the resistor, R.
Determine the DC output voltage at the output terminals V01 and
V02.
The input signal to the differential amplifier is given as (v1 - Viz) =
12 sin(wt) mV, determine the total output voltage at terminal vo1.
Explain how to eliminate the DC voltage at the output terminal, V01.
Sketch a circuit diagram that can fulfil this requirement.
R
+20 V
20 ΚΩ
Vil
V02
ના
50711
20 ΚΩ
I = 1.8 mA
Viz
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,