(a)
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of melt ice.
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(a)

Answer to Problem 1PS
In ice the water molecules are held together by hydrogen bonding network to from a three dimensional lattice.
Explanation of Solution
In water molecules the hydrogen bond in ice are linear and have strong directional property, this directionality indicate that hydrogen bonds in ice are as strong as a covalent bond. During melting few of these hydrogen bonds are melting to from water.
In water a
(b).
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of sublime solid of iodine.
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(b).

Answer to Problem 1PS
Iodine molecules are non-polar, only dispersion forces must be overcome.
Explanation of Solution
They sublime because though there are covalent bonds within molecule holding two iodine atoms together.
From this molecule Van der Waal’s forces are very weak interactions between molecules of a substance hence the iodine molecules easily escape from the solid structure easily.
(c)
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of convert liquid
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(c)

Answer to Problem 1PS
Ammonia vaporization having hydrogen bonding was occurred.
Explanation of Solution
Ammonia is a polar molecule since the nitrogen atom is more electronegative than hydrogen, and the only intermolecular forces present are London dispersion force was occurred.
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry and Chemical Reactivity - AP Edition
- The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?arrow_forwardOne liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.arrow_forwardHow does the square root mean square velocity of gas molecules vary with temperature? Illustrate this relationship by plotting the square root mean square velocity of N2 molecules as a function of temperature from T=100 K to T=300 K.arrow_forward
- Draw product B, indicating what type of reaction occurs. F3C CF3 NH2 Me O .N. + B OMearrow_forwardBenzimidazole E. State its formula. sState the differences in the formula with other benzimidazoles.arrow_forwardDraw product A, indicating what type of reaction occurs. F3C CN CF3 K2CO3, DMSO, H₂O2 Aarrow_forward
- 19) Which metal is most commonly used in galvanization to protect steel structures from oxidation? Lead a. b. Tin C. Nickel d. Zinc 20) The following molecule is an example of a: R₁ R2- -N-R3 a. Secondary amine b. Secondary amide c. Tertiary amine d. Tertiary amidearrow_forwardpls helparrow_forwardIndicate the product of the reaction OH OH CH3-CC- Ph + H2SO4 a 20°C | CH3 Pharrow_forward
- EBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENTIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





