EBK MATERIALS FOR CIVIL AND CONSTRUCTIO
4th Edition
ISBN: 8220102719569
Author: ZANIEWSKI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.9QP
To determine
The minimum fiber length for continuously reinforced composite.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An epoxy is randomly reinforced with E-Glass fibers with 0.0012 in. diameter, 0.5 in. length, 0.5 * 106 psi ultimate tensile strength, and 7.2 ksi shear strength. Does this fiber length fully strengthen the composite? What is the minimum fiber length that would make the composite continuously reinforced?
A fiber-reinforced polymer composite under isostrain condition consists of
35% fibers and 65% polymer by volume. The moduli of elasticity of the filers and the polymer are 50 X 10 psi and 0.5 x 10® psi, respectively, and the Poison's ratios of the fibers and the polvmer are 0.25 and 0.41, respectively.
Calculate the following:
a. modulus of elasticitv of the composite.
b. percentage of load carried by the fibers
c. Poison's ratio of the composite
Calculate the expected elastic modulus for a carbon-fiber composite with a continuous
uniaxial reinforcement loaded longitudinally given the matrix has a modulus of 5 GPa, the
reinforcement has a modulus of 120 GPa and the composite has 63vol% matrix & 37vol%
reinforcement.
Chapter 11 Solutions
EBK MATERIALS FOR CIVIL AND CONSTRUCTIO
Ch. 11 - Prob. 11.1QPCh. 11 - Prob. 11.2QPCh. 11 - Prob. 11.3QPCh. 11 - Prob. 11.4QPCh. 11 - Prob. 11.5QPCh. 11 - Prob. 11.6QPCh. 11 - Prob. 11.7QPCh. 11 - Prob. 11.8QPCh. 11 - Prob. 11.9QPCh. 11 - What are the functions of aggregate used in...
Ch. 11 - Prob. 11.11QPCh. 11 - Prob. 11.12QPCh. 11 - What are the benefits of adding dispersed steel...Ch. 11 - Getting measurements from Figure 11.20, determine...Ch. 11 - Three 6 in. 12 in. concrete cylinders with...Ch. 11 - Prob. 11.16QPCh. 11 - Prob. 11.17QPCh. 11 - Prob. 11.18QPCh. 11 - Prob. 11.19QPCh. 11 - Prob. 11.20QPCh. 11 - Prob. 11.21QPCh. 11 - Prob. 11.22QPCh. 11 - Prob. 11.23QPCh. 11 - Prob. 11.24QPCh. 11 - Prob. 11.25QPCh. 11 - Prob. 11.26QPCh. 11 - Prob. 11.27QPCh. 11 - Prob. 11.28QPCh. 11 - Prob. 11.29QPCh. 11 - Prob. 11.30QPCh. 11 - A circular FRP composite rod with continuous and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- In Example Problem 12.1, a uniaxial composite material is made into a circular rod Vbith a 1.27-cm diameter from 70 volume percent continuous carbon fibers and 30 volume percent epoxy. The rod is subject to an axial force of 100,000 N. The composite matcrial in Example Problem 12.1 is to be replaced with a less expensive composite made of 70 volume percent continuous E-glass fibers and 30 volume percent epoxy. The elastic moduli are 5 GPa for the epoxy resin and 72.4 GPa fos the E-glass. (a) Compare the elastic modulus, composite strain, fiber and matrix stresses, and density of this composite with the carbon epoxy composite in Example Problem 12.1. Usc the density of UHM carbon, and assume the density of the epoxy is 1.2g/cm3 . (b) Can both the E-glass fiber and matrix withstand the applied force?arrow_forwardIV- It is necessary to design a continuous and aligned glass fiber-reinforced polyester having a tensile strength of at least 1400 MPa in the longitudinal direction. The maximum possible specific gravity is 1.65. Using the following data, determine whether such a composite is possible. Justify. Assume a value of 15 MPa for the stress on the matrix when the fibers fail. Material Glass fiber Polyester Specific gravity 2.5 1.35 Tensile strength (MPa) 3500 50arrow_forwardCalculate the modulus of elasticity of fiberglass under isostrain condition if the fiberglass consists of 70% E-glass fibers and 30% epoxy by volume. Also, calculate the percentage of load carried by the glass fibers. The moduli of elasticity of the glass fibers and the epoxy are 70.5 and 6.9 GPa, respectively. If a longitudinal stress of 60 MPa is applied on the composite with a cross-sectional area of 300 mm2, what is the load carried by each of the fiber and the matrix phases?What is the strain sustained by each of the fiber and the matrix phases?arrow_forward
- A continuous aligned fibre-reinforced composite is produced containing 33% aramid fibres of tensile strength 2.35GPA and the remainder of polycarbonate with tensile strength 78 MPa. What is the longitudinal strength of the composite in MPa? [Enter your answer as a real integer number - do not include the unit]arrow_forwardBefore solve the problem please read the question carefully and give me right solution according to the questionarrow_forwardA FRP composite includes 47% continuous and aligned Aramid fibers by volume. The moduli of elasticity of the Aramid fibers and the epoxy resin matrix are 19 * 106 psi and 0.6 * 106 psi, respectively.a. Compute the modulus of elasticity of the composite in the longitudinal and transverse directions.b. If the composite cross-sectional area is 0.5 in.2 and a stress of 12 ksi is applied in the longitudinal direction, compute the load carried by the fibers and the matrix.c. Determine the strain sustained by each of the phases when stress in part(b) is applied.arrow_forward
- A FRP composite includes 40% continuous and aligned Aramid fibers by vol-ume. The moduli of elasticity of the Aramid fibers and the epoxy resin matrix are 130 and 3.9 GPa, respectively. a. Compute the modulus of elasticity of the composite in the longitudinal and transverse directions. b. If the composite cross-sectional area is 150 mm' and a stress of 40 MPa is applied in the longitudinal direction, compute the load carried by the fibers and the matrix. c. Determine the strain sustained by each of the phases when stress in part (b) is applied.arrow_forwardA fiber-reinforced polymer composite under isostrain condition consists of 35%fibers and 65% polymer by volume. The moduli of elasticity of the fibers and thepolymer are 260 GPa and 3.4 GPa, respectively, and the Poisson’s ratios of thefibers and the polymer are 0.25 and 0.41, respectively. Calculate the following:a. modulus of elasticity of the composite.b. percentage of load carried by the fibersc. Poisson’s ratio of the compositearrow_forwardASAParrow_forward
- Q6) How does moisture impact tension and compression strength in composites?arrow_forwardDetermine the (x, y, z) coordinates for the composite volume X 130 mm 190 mm 275 mm 220 mm 190 mm 185 mmarrow_forwardA steel bar and an aluminum bar are bonded together as shown to form a composite beam. Knowing that the vertical shear in the beam is 4 kips and that the modulus of elasticity is 29 * 106 psi for the steel and 10.6 *106 psi for the aluminum, determine (a) the aver-age shearing stress at the bonded surface, (b) the maximum shearing stress in the beam.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning