
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.80P
Determine if either (a) the smallest or (b) the largest of the seven Taeo pumps in Fig. Pl 1.24. running in series at 1160 r/min, can efficiently pump water at 20°C through 1 km of horizontal 12-cm-diameter commercial steel pipe.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
determine the direction and magnitude of angular velocity ω3 of link CD in the four-bar linkage using the relative velocity graphical method
Four-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and
magnitude of w3 using relative motion graphical method.
A
B
2
3
77777
477777
Four-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and
magnitude of w3 using relative motion graphical method.
A
B
2
3
77777
477777
Chapter 11 Solutions
Fluid Mechanics
Ch. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Pl 1.5 What type of pump is shown in Fig. Pl 1.5?...Ch. 11 - Prob. 11.6PCh. 11 - A piston PDP has a 5-in diameter and a 2-in stroke...Ch. 11 - Pl 1.8 A Bell and Gossett pump at best efficiency,...Ch. 11 - Prob. 11.9PCh. 11 - Prob. 11.10P
Ch. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Pl 1.13 A 3.5 hp pump delivers 1140 lbf of...Ch. 11 - Prob. 11.14PCh. 11 - Prob. 11.15PCh. 11 - Prob. 11.16PCh. 11 - Prob. 11.17PCh. 11 - Prob. 11.18PCh. 11 - Pl 1.19 A centrifugal pump has r2 = 9 in, b2 = 2...Ch. 11 - Prob. 11.20PCh. 11 - Prob. 11.21PCh. 11 - Prob. 11.22PCh. 11 - P11.23 When pumping water, (a) at what speed...Ch. 11 - Prob. 11.24PCh. 11 - Prob. 11.25PCh. 11 - Prob. 11.26PCh. 11 - Prob. 11.27PCh. 11 - Prob. 11.28PCh. 11 - Tests by the Byron Jackson Co. of a...Ch. 11 - A pump, geometrically similar to the 12.95-in...Ch. 11 - Prob. 11.31PCh. 11 - Prob. 11.32PCh. 11 - Prob. 11.33PCh. 11 - You are asked to consider a pump geometrically...Ch. 11 - Prob. 11.35PCh. 11 - Prob. 11.36PCh. 11 - Prob. 11.37PCh. 11 - Prob. 11.38PCh. 11 - Prob. 11.39PCh. 11 - Prob. 11.40PCh. 11 - Prob. 11.41PCh. 11 - Prob. 11.42PCh. 11 - The 28-in-diameter pump in Fig. 11.7a at 1170...Ch. 11 - Prob. 11.44PCh. 11 - Prob. 11.45PCh. 11 - Prob. 11.46PCh. 11 - PI 1.47 A pump must be designed to deliver 6 m /s...Ch. 11 - Pl 1.48 Using the data for the pump in Prob. Pl...Ch. 11 - Prob. 11.49PCh. 11 - Prob. 11.50PCh. 11 - Prob. 11.51PCh. 11 - Prob. 11.52PCh. 11 - Prob. 11.53PCh. 11 - Prob. 11.54PCh. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - Prob. 11.57PCh. 11 - Prob. 11.58PCh. 11 - Suppose it is desired to deliver 700 ftVmin of...Ch. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - Pl 1.63 A good curve-fit to the head vs. flow for...Ch. 11 - Prob. 11.64PCh. 11 - *P11.65 An 11.5-in-diameter centrifugal pump,...Ch. 11 - Pl 1.66 It is proposed to run the pump of Prob. Pl...Ch. 11 - Prob. 11.67PCh. 11 - Prob. 11.68PCh. 11 - The pump of Prob. P1138, running at 3500 r/min, is...Ch. 11 - Prob. 11.70PCh. 11 - Prob. 11.71PCh. 11 - Prob. 11.72PCh. 11 - Prob. 11.73PCh. 11 - Prob. 11.74PCh. 11 - Prob. 11.75PCh. 11 - Prob. 11.76PCh. 11 - Prob. 11.77PCh. 11 - Prob. 11.78PCh. 11 - Prob. 11.79PCh. 11 - Determine if either (a) the smallest or (b) the...Ch. 11 - Prob. 11.81PCh. 11 - Prob. 11.82PCh. 11 - Prob. 11.83PCh. 11 - Prob. 11.84PCh. 11 - Prob. 11.85PCh. 11 - Prob. 11.86PCh. 11 - Prob. 11.87PCh. 11 - Prob. 11.88PCh. 11 - A Pelton wheel of 12-ft pitch diameter operates...Ch. 11 - Prob. 11.90PCh. 11 - Prob. 11.91PCh. 11 - Prob. 11.92PCh. 11 - Prob. 11.93PCh. 11 - Prob. 11.94PCh. 11 - Prob. 11.95PCh. 11 - Prob. 11.96PCh. 11 - Prob. 11.97PCh. 11 - Prob. 11.98PCh. 11 - Prob. 11.99PCh. 11 - Prob. 11.100PCh. 11 - Prob. 11.101PCh. 11 - Prob. 11.102PCh. 11 - Prob. 11.103PCh. 11 - Prob. 11.104PCh. 11 - Prob. 11.105PCh. 11 - Prob. 11.106PCh. 11 - Prob. 11.107PCh. 11 - Prob. 11.108PCh. 11 - Prob. 11.1WPCh. 11 - Prob. 11.2WPCh. 11 - Prob. 11.3WPCh. 11 - Prob. 11.4WPCh. 11 - Prob. 11.5WPCh. 11 - Consider a dimensionless pump performance chart...Ch. 11 - Prob. 11.7WPCh. 11 - Prob. 11.8WPCh. 11 - Prob. 11.9WPCh. 11 - Prob. 11.10WPCh. 11 - Prob. 11.1CPCh. 11 - Prob. 11.2CPCh. 11 - Prob. 11.3CPCh. 11 - Prob. 11.4CPCh. 11 - Prob. 11.5CPCh. 11 - Prob. 11.6CPCh. 11 - Prob. 11.7CPCh. 11 - Prob. 11.8CPCh. 11 - Prob. 11.1DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The evaporator of a vapor compression refrigeration cycle utilizing R-123 as the refrigerant isbeing used to chill water. The evaporator is a shell and tube heat exchanger with the water flowingthrough the tubes. The water enters the heat exchanger at a temperature of 54°F. The approachtemperature difference of the evaporator is 3°R. The evaporating pressure of the refrigeration cycleis 4.8 psia and the condensing pressure is 75 psia. The refrigerant is flowing through the cycle witha flow rate of 18,000 lbm/hr. The R-123 leaves the evaporator as a saturated vapor and leaves thecondenser as a saturated liquid. Determine the following:a. The outlet temperature of the chilled waterb. The volumetric flow rate of the chilled water (gpm)c. The UA product of the evaporator (Btu/h-°F)d. The heat transfer rate between the refrigerant and the water (tons)arrow_forward(Read image) (Answer given)arrow_forwardProblem (17): water flowing in an open channel of a rectangular cross-section with width (b) transitions from a mild slope to a steep slope (i.e., from subcritical to supercritical flow) with normal water depths of (y₁) and (y2), respectively. Given the values of y₁ [m], y₂ [m], and b [m], calculate the discharge in the channel (Q) in [Lit/s]. Givens: y1 = 4.112 m y2 = 0.387 m b = 0.942 m Answers: ( 1 ) 1880.186 lit/s ( 2 ) 4042.945 lit/s ( 3 ) 2553.11 lit/s ( 4 ) 3130.448 lit/sarrow_forward
- Problem (14): A pump is being used to lift water from an underground tank through a pipe of diameter (d) at discharge (Q). The total head loss until the pump entrance can be calculated as (h₁ = K[V²/2g]), h where (V) is the flow velocity in the pipe. The elevation difference between the pump and tank surface is (h). Given the values of h [cm], d [cm], and K [-], calculate the maximum discharge Q [Lit/s] beyond which cavitation would take place at the pump entrance. Assume Turbulent flow conditions. Givens: h = 120.31 cm d = 14.455 cm K = 8.976 Q Answers: (1) 94.917 lit/s (2) 49.048 lit/s ( 3 ) 80.722 lit/s 68.588 lit/s 4arrow_forwardProblem (13): A pump is being used to lift water from the bottom tank to the top tank in a galvanized iron pipe at a discharge (Q). The length and diameter of the pipe section from the bottom tank to the pump are (L₁) and (d₁), respectively. The length and diameter of the pipe section from the pump to the top tank are (L2) and (d2), respectively. Given the values of Q [L/s], L₁ [m], d₁ [m], L₂ [m], d₂ [m], calculate total head loss due to friction (i.e., major loss) in the pipe (hmajor-loss) in [cm]. Givens: L₁,d₁ Pump L₂,d2 오 0.533 lit/s L1 = 6920.729 m d1 = 1.065 m L2 = 70.946 m d2 0.072 m Answers: (1) 3.069 cm (2) 3.914 cm ( 3 ) 2.519 cm ( 4 ) 1.855 cm TABLE 8.1 Equivalent Roughness for New Pipes Pipe Riveted steel Concrete Wood stave Cast iron Galvanized iron Equivalent Roughness, & Feet Millimeters 0.003-0.03 0.9-9.0 0.001-0.01 0.3-3.0 0.0006-0.003 0.18-0.9 0.00085 0.26 0.0005 0.15 0.045 0.000005 0.0015 0.0 (smooth) 0.0 (smooth) Commercial steel or wrought iron 0.00015 Drawn…arrow_forwardThe flow rate is 12.275 Liters/s and the diameter is 6.266 cm.arrow_forward
- An experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (20): Given the value of APm/Lm [kPa/m], and assuming pressure coefficient similitude, calculate the drop in the pressure per unit length of the water main (APP/Lp) in [Pa/m]. Givens: AP M/L m = 590.637 kPa/m meen Answers: ( 1 ) 59.369 Pa/m ( 2 ) 73.83 Pa/m (3) 95.443 Pa/m ( 4 ) 44.444 Pa/m *******arrow_forwardFind the reaction force in y if Ain = 0.169 m^2, Aout = 0.143 m^2, p_in = 0.552 atm, Q = 0.367 m^3/s, α = 31.72 degrees. The pipe is flat on the ground so do not factor in weight of the pipe and fluid.arrow_forwardFind the reaction force in x if Ain = 0.301 m^2, Aout = 0.177 m^2, p_in = 1.338 atm, Q = 0.669 m^3/s, and α = 37.183 degreesarrow_forward
- Problem 5: Three-Force Equilibrium A structural connection at point O is in equilibrium under the action of three forces. • • . Member A applies a force of 9 kN vertically upward along the y-axis. Member B applies an unknown force F at the angle shown. Member C applies an unknown force T along its length at an angle shown. Determine the magnitudes of forces F and T required for equilibrium, assuming 0 = 90° y 9 kN Aarrow_forwardProblem 19: Determine the force in members HG, HE, and DE of the truss, and state if the members are in tension or compression. 4 ft K J I H G B C D E F -3 ft -3 ft 3 ft 3 ft 3 ft- 1500 lb 1500 lb 1500 lb 1500 lb 1500 lbarrow_forwardProblem 14: Determine the reactions at the pin A, and the tension in cord. Neglect the thickness of the beam. F1=26kN F2 13 12 80° -2m 3marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license