The relationship between intermolecular force in a liquid and its boiling point and critical temperature has to be outlined. The reason for the greater critical temperature of water has to be outlined. Concept Introduction: Intermolecular force Intermolecular force refers to the attractive forces between the molecules of a substance. It is the force which holds the molecules together . Many physical properties of the substance such as – melting point, boiling point, surface tension, viscosity etc., are influenced by the strength of intermolecular force present in the substance. The three types of intermolecular forces are – London dispersion force, dipole-dipole force and Hydrogen bonding. They are collectively known as Van der Waals forces. London dispersion forces exist in all types of molecules. This is the force responsible for the condensation of non-polar compounds into liquids or solids under low temperature. Dipole-dipole forces exist in polar covalent compounds. Hydrogen bonding exists in polar covalent compounds containing Fluorine, Oxygen or Nitrogen directly bonded to Hydrogen. The strength of intermolecular forces is, London dispersion forces < Dipole-dipole forces < Hydrogen bonding Boiling point The temperature at which the vapor pressure of liquid becomes equal to atmospheric pressure is boiling point of the liquid . During boiling the molecules in liquid phase partly evaporates to vapor phase. The molecules in vapor phase and that of the liquid phase remain in equilibrium with each other. Critical temperature Critical temperature is defined as the temperature above which a gas cannot be liquefied irrespective of the external pressure.
The relationship between intermolecular force in a liquid and its boiling point and critical temperature has to be outlined. The reason for the greater critical temperature of water has to be outlined. Concept Introduction: Intermolecular force Intermolecular force refers to the attractive forces between the molecules of a substance. It is the force which holds the molecules together . Many physical properties of the substance such as – melting point, boiling point, surface tension, viscosity etc., are influenced by the strength of intermolecular force present in the substance. The three types of intermolecular forces are – London dispersion force, dipole-dipole force and Hydrogen bonding. They are collectively known as Van der Waals forces. London dispersion forces exist in all types of molecules. This is the force responsible for the condensation of non-polar compounds into liquids or solids under low temperature. Dipole-dipole forces exist in polar covalent compounds. Hydrogen bonding exists in polar covalent compounds containing Fluorine, Oxygen or Nitrogen directly bonded to Hydrogen. The strength of intermolecular forces is, London dispersion forces < Dipole-dipole forces < Hydrogen bonding Boiling point The temperature at which the vapor pressure of liquid becomes equal to atmospheric pressure is boiling point of the liquid . During boiling the molecules in liquid phase partly evaporates to vapor phase. The molecules in vapor phase and that of the liquid phase remain in equilibrium with each other. Critical temperature Critical temperature is defined as the temperature above which a gas cannot be liquefied irrespective of the external pressure.
Solution Summary: The author explains the relationship between intermolecular force in a liquid and its boiling point and critical temperature.
The relationship between intermolecular force in a liquid and its boiling point and critical temperature has to be outlined.
The reason for the greater critical temperature of water has to be outlined.
Concept Introduction:
Intermolecular force
Intermolecular force refers to the attractive forces between the molecules of a substance. It is the force which holds the molecules together. Many physical properties of the substance such as – melting point, boiling point, surface tension, viscosity etc., are influenced by the strength of intermolecular force present in the substance.
The three types of intermolecular forces are – London dispersion force, dipole-dipole force and Hydrogen bonding. They are collectively known as Van der Waals forces.
London dispersion forces exist in all types of molecules. This is the force responsible for the condensation of non-polar compounds into liquids or solids under low temperature.
Dipole-dipole forces exist in polar covalent compounds. Hydrogen bonding exists in polar covalent compounds containing Fluorine, Oxygen or Nitrogen directly bonded to Hydrogen.
The temperature at which the vapor pressure of liquid becomes equal to atmospheric pressure is boiling point of the liquid. During boiling the molecules in liquid phase partly evaporates to vapor phase. The molecules in vapor phase and that of the liquid phase remain in equilibrium with each other.
Critical temperature
Critical temperature is defined as the temperature above which a gas cannot be liquefied irrespective of the external pressure.
Draw the product of the reaction
shown below. Ignore inorganic
byproducts.
H
conc. HBr
Drawing
Q
Calculate the atomic packing factor of diamond knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are, respectively, 0.038 and 0.117 nm.
A pdf file of your hand drawn, stepwise mechanisms for the reactions.
For each reaction in the assignment, you must write each mechanism
three times (there are 10 reactions, so 30 mechanisms). (A) do the work
on a tablet and save as a pdf., it is expected to write each mechanism
out and NOT copy and paste the mechanism after writing it just once.
Everything should be drawn out stepwise and every bond that is formed
and broken in the process of the reaction, and is expected to see all
relevant lone pair electrons and curved arrows.
Aldol:
NaOH
HO
H
Δ
NaOH
Δ
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell