ORGANIC CHEM +SG +SAPLING >IP<
ORGANIC CHEM +SG +SAPLING >IP<
6th Edition
ISBN: 9781319171179
Author: LOUDON
Publisher: MAC HIGHER
Question
Book Icon
Chapter 11, Problem 11.62AP
Interpretation Introduction

(a)

Interpretation:

The synthesis of ORGANIC CHEM +SG +SAPLING >IP<, Chapter 11, Problem 11.62AP , additional homework tip  1in enantiomerically pure form from enantiomerically pure ORGANIC CHEM +SG +SAPLING >IP<, Chapter 11, Problem 11.62AP , additional homework tip  2is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, ORGANIC CHEM +SG +SAPLING >IP<, Chapter 11, Problem 11.62AP , additional homework tip  3and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Interpretation Introduction

(b)

Interpretation:

The synthesis of (2R, 3S)-3-methoxybutan-2-one in enantiomerically pure form from enantiomerically pure (2R, 3R)-2, 3-dimethyloxirane is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, (+)DET and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Interpretation Introduction

(c)

Interpretation:

The synthesis of (2R, 3S)-2-ethoxy-3-methoxybutane in enantiomerically pure form from enantiomerically pure (2R, 3R)-2, 3-dimethyloxirane is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, (+)DET and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Interpretation Introduction

(d)

Interpretation:

The synthesis of (2S, 3R)-2-ethoxy-3-methoxybutane in enantiomerically pure form from enantiomerically pure (2R, 3R)-2, 3-dimethyloxirane is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, (+)DET and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Blurred answer
Students have asked these similar questions
How many signals do you expect in the H NMR spectrum for this molecule? Br Br Write the answer below. Also, in each of the drawing areas below is a copy of the molecule, with Hs shown. In each copy, one of the H atoms is colored red. Highlight in red all other H atoms that would contribute to the same signal as the H already highlighted red. Note for advanced students: In this question, any multiplet is counted as one signal. Number of signals in the 'H NMR spectrum. For the molecule in the top drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in top molecule For the molecule in the bottom drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in bottom molecule
In the drawing area below, draw the major products of this organic reaction: 1. NaOH ? 2. CH3Br If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. No reaction. Click and drag to start drawing a structure. ☐ : A ค
Predict the major products of the following organic reaction: NC Δ ? Some important Notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to draw bonds carefully to show important geometric relationships between substituents. Note: if your answer contains a complicated ring structure, you must use one of the molecular fragment stamps (available in the menu at right) to enter the ring structure. You can add any substituents using the pencil tool in the usual way. Click and drag to start drawing a structure. Х а

Chapter 11 Solutions

ORGANIC CHEM +SG +SAPLING >IP<

Ch. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14PCh. 11 - Prob. 11.15PCh. 11 - Prob. 11.16PCh. 11 - Prob. 11.17PCh. 11 - Prob. 11.18PCh. 11 - Prob. 11.19PCh. 11 - Prob. 11.20PCh. 11 - Prob. 11.21PCh. 11 - Prob. 11.22PCh. 11 - Prob. 11.23PCh. 11 - Prob. 11.24PCh. 11 - Prob. 11.25PCh. 11 - Prob. 11.26PCh. 11 - Prob. 11.27PCh. 11 - Prob. 11.28PCh. 11 - Prob. 11.29PCh. 11 - Prob. 11.30PCh. 11 - Prob. 11.31PCh. 11 - Prob. 11.32PCh. 11 - Prob. 11.33PCh. 11 - Prob. 11.34PCh. 11 - Prob. 11.35PCh. 11 - Prob. 11.36PCh. 11 - Prob. 11.37PCh. 11 - Prob. 11.38PCh. 11 - Prob. 11.39PCh. 11 - Prob. 11.40PCh. 11 - Prob. 11.41PCh. 11 - Prob. 11.42PCh. 11 - Prob. 11.43PCh. 11 - Prob. 11.44APCh. 11 - Prob. 11.45APCh. 11 - Prob. 11.46APCh. 11 - Prob. 11.47APCh. 11 - Prob. 11.48APCh. 11 - Prob. 11.49APCh. 11 - Prob. 11.50APCh. 11 - Prob. 11.51APCh. 11 - Prob. 11.52APCh. 11 - Prob. 11.53APCh. 11 - Prob. 11.54APCh. 11 - Prob. 11.55APCh. 11 - Prob. 11.56APCh. 11 - Prob. 11.57APCh. 11 - Prob. 11.58APCh. 11 - Prob. 11.59APCh. 11 - Prob. 11.60APCh. 11 - Prob. 11.61APCh. 11 - Prob. 11.62APCh. 11 - Prob. 11.63APCh. 11 - Prob. 11.64APCh. 11 - Prob. 11.65APCh. 11 - Prob. 11.66APCh. 11 - Prob. 11.67APCh. 11 - Prob. 11.68APCh. 11 - Prob. 11.69APCh. 11 - Prob. 11.70APCh. 11 - Prob. 11.71APCh. 11 - Prob. 11.72APCh. 11 - Prob. 11.73APCh. 11 - Prob. 11.74APCh. 11 - Prob. 11.75APCh. 11 - Prob. 11.76APCh. 11 - Prob. 11.77APCh. 11 - Prob. 11.78APCh. 11 - Prob. 11.79APCh. 11 - Prob. 11.80APCh. 11 - Prob. 11.81AP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning