The heats of vaporization of liquid Chlorine, liquid Hydrogen and liquid Nitrogen are given. These values are expected values has to be explained. Concept introduction: Larger size molecules have lesser interaction between nuclei and electrons. Thus the electrons are free from nuclear force of attraction and easily form dipoles. Thus, larger the size of the molecules, higher is the strength of London dispersion force. London dispersion forces < Dipole-dipole forces < Hydrogen bonding Both London dispersion forces and dipole-dipole forces do not exist permanently. London dispersion force is due to temporary dipole whereas dipole-dipole force is due to temporary dipole and remains longer time than the former one. But hydrogen bonding exists permanently and thus it is the strongest among the intermolecular forces.
The heats of vaporization of liquid Chlorine, liquid Hydrogen and liquid Nitrogen are given. These values are expected values has to be explained. Concept introduction: Larger size molecules have lesser interaction between nuclei and electrons. Thus the electrons are free from nuclear force of attraction and easily form dipoles. Thus, larger the size of the molecules, higher is the strength of London dispersion force. London dispersion forces < Dipole-dipole forces < Hydrogen bonding Both London dispersion forces and dipole-dipole forces do not exist permanently. London dispersion force is due to temporary dipole whereas dipole-dipole force is due to temporary dipole and remains longer time than the former one. But hydrogen bonding exists permanently and thus it is the strongest among the intermolecular forces.
Solution Summary: The author explains that the heats of vaporization of liquid Chlorine, liquid Hydrogen and liquid Nitrogen are expected values.
The heats of vaporization of liquid Chlorine, liquid Hydrogen and liquid Nitrogen are given. These values are expected values has to be explained.
Concept introduction:
Larger size molecules have lesser interaction between nuclei and electrons. Thus the electrons are free from nuclear force of attraction and easily form dipoles. Thus, larger the size of the molecules, higher is the strength of London dispersion force.
Both London dispersion forces and dipole-dipole forces do not exist permanently. London dispersion force is due to temporary dipole whereas dipole-dipole force is due to temporary dipole and remains longer time than the former one. But hydrogen bonding exists permanently and thus it is the strongest among the intermolecular forces.
If the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate
the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data:
molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.
If the molar conductivity at infinite dilution of HAC is A0 = 390.5 S cm² mol¹. Calculate
the Arrhenius conductivity of a 9.3% by weight solution of HAc with a pH of 3.3. Data:
molecular weight of HAC is 60.05 g/mol and the density of the solution is 1 g/cm³.
Determine the distance between the metal and the OHP layer using the Helm-
holtz model when the electrode's differential capacitance is 145 μF cm².
DATA: dielectric constant of the medium for the interfacial zone &r=
lectric constant of the vacuum &0 = 8.85-10-12 F m-1
= 50, die-
Chapter 11 Solutions
Bundle: General Chemistry, Loose-Leaf Version, 11th + LabSkills PreLabs v2 for Organic Chemistry (powered by OWLv2), 4 terms (24 months) Printed ... for Ebbing/Gammon's General Chemistry, 11th
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell