
(a)
Interpretation:
The mass of barium sulfate formed after the completion of the
(a)

Explanation of Solution
Given Information:
The molarity of barium chloride solution is
Titration is a method to determine the concentration of a substance in the solution by making it react with a solution of known concentration of other substance, just beyond the point where the reaction between both the substances completes. In precipitation reactions, on the reaction of the reactants, an insoluble end product is formed which precipitates out from the solution.
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Molarity of the solution
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate. Therefore,
Barium sulfate formed is as follows:
However, only
The molar mass of
The number of moles
Substitute
Thus, the mass of barium sulfate formed is
(b)
Interpretation:
The mass of barium sulfate formed after the completion of the given chemical reaction is to be determined.
(b)

Explanation of Solution
Given Information:
The molarity of barium chloride solution is
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate.
The number of moles of
The molar mass of
Substitute
Thus, the mass of barium sulfate formed is
(c)
Interpretation:
The mass of barium sulfate formed after the completion of the given chemical reaction is to be determined.
(c)

Explanation of Solution
Given Information:
The molarity of barium chloride solution is
The chemical reaction for the formation of barium sulfate on the reaction of barium chloride and potassium sulfate is,
Thus, one mole of barium chloride reacts with one mole of potassium sulfate to form a mole of barium sulfate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that one mole of barium chloride reacts with one mole of potassium sulfate to produce one mole of barium sulfate.
However, the number of moles of
The amount of
The molar mass of
Substitute
Thus, the mass of barium sulfate formed is
Want to see more full solutions like this?
Chapter 11 Solutions
Introduction To Chemistry 5th Edition
- How many chiral centers are there in the following molecule? HO 0 1 ○ 2 ♡ 4 'N'arrow_forwardThe following chemical structure represents a molecule of what molecular formula?arrow_forwardWhich region(s) of the following phospholipid is/are hydrophobic? RO I hydro-water phobic-dislikes = Hydrophobic dislikes water ○ I only Il only I and III only II and IV only O II, III, and IV only III || IVarrow_forward
- Given the following data, determine the order of the reaction with respect to H2. H2(g) + 21Cl(g) → I2(g) + 2HCl(g) Experiment [H2] (torr) [ICI] (torr) Rate (M/s) 1 250 325 0.266 2 250 81 0.0665 3 50 325 0.266arrow_forwardWhich one of the following molecules is chiral? H- NH₂ H3C དང་།་ OH H HO H₂N HO- -H CHO -OH H HO- OH H- -H CH₂OH OHarrow_forwardThe structure of an unsaturated phospholipid is shown below. Which region of the molecule is most hydrophilic ? H₂N-CH₂ H₂C IV CH3 CH3 hydro-water philic-likes = Hydrophilic likes water ○ IV All regions are equally hydrophilic. IIIarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





