(a)
Interpretation:
The mass of silver carbonate formed after the completion of the given
(a)
Explanation of Solution
Given Information:
The molarity of silver nitrate solution is
Titration is a method to determine the concentration of a substance in the solution by making it react with a solution of known concentration of other substance, just beyond the point where the reaction between both the substances completes. In precipitation reactions, on the reaction of reactants, an insoluble end product is formed which precipitates out from the solution.
The chemical reaction for the formation of silver carbonate on the reaction of silver nitrate and sodium carbonate is,
Thus, two moles of silver nitrate react with one mole of sodium carbonate to form a mole of silver carbonate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Molarity of the solution
Substitute
Substitute
From the equation, it can be summarized that two moles of silver nitrate react with one mole of sodium carbonate to produce one mole of silver carbonate. Therefore,
Silver carbonate formed is as follows:
The molar mass of
The number of moles
Substitute
Thus, the mass of silver carbonate formed is
(b)
Interpretation:
The mass of silver carbonate formed after the completion of the given chemical reaction is to be determined.
(b)
Explanation of Solution
Given Information:
The molarity of silver nitrate solution is
The chemical reaction for the formation of silver carbonate on the reaction of silver nitrate and sodium carbonate is,
Thus, two moles of silver nitrate react with one mole of sodium carbonate to form a mole of silver carbonate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that two moles of silver nitrate react with one mole of sodium carbonate to produce one mole of silver carbonate.
Silver carbonate formed is as follows:
The molar mass of
Substitute
Thus, the mass of silver carbonate formed is
(c)
Interpretation:
The mass of silver carbonate formed after the completion of the given chemical reaction is to be determined.
(c)
Explanation of Solution
Given Information:
The molarity of silver nitrate solution is
The chemical reaction for the formation of silver carbonate on the reaction of silver nitrate and sodium carbonate is,
Thus, two moles of silver nitrate react with one mole of sodium carbonate to form a mole of silver carbonate.
Convert volume units from milliliters to liters as follows:
Convert
Convert
Substitute
Substitute
From the equation, it can be summarized that two moles of silver nitrate react with one mole of sodium carbonate to produce one mole of silver carbonate.
Silver carbonate formed is as follows:
The molar mass of
Substitute
Thus, the mass of silver carbonate formed is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK INTRODUCTION TO CHEMISTRY
- Describe in words how you would prepare pure crystalline AgCl and NaNO3 from solid AgNO3 and solid NaCl.arrow_forwardYou are given four different aqueous solutions and told that they each contain NaOH, Na2CO3, NaHCO3, or a mixture of these solutes. You do some experiments and gather these data about the samples. Sample A: Phenolphthalein is colorless in the solution. Sample B: The sample was titrated with HCl until the pink color of phenolphthalein disappeared, then methyl orange was added. The solution became pink. Methyl orange changes color from pH 3.01 (red) to pH 4.4 (orange). Sample C: Equal volumes of the sample were titrated with standardized acid. Using phenolphthalein as an indicator required 15.26 mL of standardized acid to change the phenolphthalein color. The other sample required 17.90 mL for a color change using methyl orange as the indicator. Sample D: Two equal volumes of the sample were titrated with standardized HCl. Using phenolphthalein as the indicator, it took 15.00 mL of acid to reach the equivalence point; using methyl orange as the indicator required 30.00 mL HCl to achieve neutralization. Identify the solute in each of the solutions.arrow_forwardWhen 85.0 mL of 0.250 M Ba(OH)2 solution is added to 85.00 mL of 0.250 M Al (NO3)3 solution, a white gelatinous precipitate of Al(OH)3; is formed. Assuming 100% yield, (a) what mass (in grams) of Al(OH)3 is formed? (b) what is the molarity of each of the ions Ba2+, OH-, Al3+, NO3- in the resulting solution?arrow_forward
- An experiment in your laboratory requires 500. mL of a 0.0200 M solution of Na2CO3. You are given solid Na2CO3, distilled water, and a 500.-mL volumetric flask. Describe how to prepare the required solution.arrow_forwardLead poisoning has been a hazard for centuries. Some scholars believe that the decline of the Roman Empire can be traced, in part, to high levels of lead in water from containers and pipes, and from wine that was stored in leadglazed containers. If we presume that the typical Roman water supply was saturated with lead carbonate, PbCO3 (Ksp = 7.4 1014), how much lead will a Roman ingest in a year if he or she drinks 1 L/day from the container?arrow_forwardAccording to the Resource Conservation and Recovery Act (RCRA), waste material is classified as toxic and must be handled as hazardous if the lead concentration exceeds 5 mg/L. By adding chloride ion, the lead ion will precipitate as PbCl2, which can be separated from the liquid portion. Once the lead has been removed, the rest of the waste can be sent to a conventional waste treatment facility. How many grams of sodium chloride must be added to 500 L of a waste solution to reduce the concentration of the Pb2+ ion from 10 to 5 mg/L?arrow_forward
- A student is asked to identify the metal nitrate present in an aqueous solution. The cation in the solution can be either Na+, Ba2+, Ag+, or Ni2+. Results of solubility experiments are as follows: unknown + chloride ions—no precipitate unknown + carbonate ions—precipitate unknown + sulfate ions—precipitate What is the cation in the solution?arrow_forwardWhat mass of solid aluminum hydroxide can be produced when 50.0 mL of 0.200 M Al(NO3)3 is added to 200.0 mL of 0.100 M KOH?arrow_forward4-33 When a solution of hydrochloric acid, HCl, is added to a solution of sodium sulfite, Na.2S03, sulfur dioxide gas is released from the solution. Write a net ionic equation for this reaction. An aqueous solution of HCl contains H+ and Cl- ions, and Na2SO3 exists as dissociated ions in aqueous solution.arrow_forward
- Relative solubilities of salts in liquid ammonia can differsignificantly from those in water. Thus, silver bromide issoluble in ammonia, but barium bromide is not (thereverse of the situation in water). Write a balanced equation for the reaction of anammonia solution of barium nitrate with an ammoniasolution of silver bromide. Silver nitrate is soluble inliquid ammonia. What volume of a 0.50 M solution of silver bromidewill react completely with 0.215 L of a 0.076 M solutionof barium nitrate in ammonia? What mass of barium bromide will precipitate fromthe reaction in part (b)?arrow_forwardThe molarity of iodine in solution can be determined by titration with arsenious acid, H3AsO4. The unbalanced equation for the reaction is H3AsO3(aq)+I2(aq)+H2O2 I(aq)+H3AsO4(aq)+2 H+(aq)A 243-mL solution of aqueous iodine is prepared by dissolving iodine crystals in water. A fifty-mL portion of the solution requires 15.42 mL of 0.134 M H3AsO3 for complete reaction. What is the molarity of the solution? How many grams of iodine were added to the solution?arrow_forwardThe cations Ba2+ and Sr2+ can be precipitated as very insoluble sulfates. (a) If you add sodium sulfate to a solution containing these metal cations, each with a concentration of 0.10 M, which is precipitated first, BaSO4 or SrSO4? (b) What will be the concentration of the first ion that precipitates (Ba2+ or Sr2+) when the second, more soluble salt begins to precipitate?arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning