The cantilevered beam has a circular cross section. If it supports a force P at its end, determine its radius y as a function of x so that it is subjected to a constant maximum bending stress σallow throughout its length.
The radius y as a function of x.
Answer to Problem 11.47RP
The radius y as a function of x is
Explanation of Solution
Given information:
The force is P.
Calculation:
Sketch the free body diagram of cantilever beam as shown in Figure 1:
Let, M is the moment acting cantilever beam and V is the shear force.
Consider the length is x.
Refer to Figure 1:
Calculate the shear force as follows:
Calculate the moment as shown below:
Sketch the calculated values as shown in Figure 2.
Write the section properties as follows:
Calculate the moment of inertia (I) as shown in below:
Here, c is the radius of section.
Substitute y for c in Equation (1).
Find the value of section modulus S as shown in below:
Here, I is the moment of inertia and c is the centroid of section.
Substitute
Calculate the allowable bending stress
Here, M is the moment.
Substitute
Hence, the radius y as a function of x is
Want to see more full solutions like this?
Chapter 11 Solutions
Mechanics Of Materials, Si Edition
Additional Engineering Textbook Solutions
Engineering Mechanics: Statics
Fox and McDonald's Introduction to Fluid Mechanics
Vector Mechanics For Engineers
Statics and Mechanics of Materials
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Vector Mechanics for Engineers: Statics, 11th Edition
- Determine the internal normal force and shear force, and the bending moment in the beam at points C and D. Assume the support at B is a roller. Point C is located just to the right of the 8-kip load.arrow_forwardDetermine the magnitude of the torque about the x axis in the shaft caused by the gage load P. Shaft Cross Section Load, P HL PL PH Prarrow_forwardIf the beam is subjected to a moment of M = 100 kN # m, determine the bending stress at points A, B, and C. Sketch the bending stress distribution on the cross section.arrow_forward
- The bar has a thickness of 0.5 in. and is subjected to a moment of 600 lb # ft. Determine the maximum bending stress in the bar.arrow_forwardIf d = 450 mm, determine the absolute maximum bending stress in the overhanging beam.arrow_forwardThe beam is made from three boards nailed together as shown. If the moment acting on the cross section is M = 600 N # m, determine the maximum bending stress in the beam. Sketch a three-dimensional view of the stress distribution and cover the cross section.arrow_forward
- the 1m beam shown is subjected to 6 kN. if the beams has a rectangular cross section as shown where b = 0.2 m h = 0.5 m the maximum bending stress on the beam at section a-a when d = 0.3 m is kPa aarrow_forwardDetermine the internal normal force at point C, if F = 48 kN . Determine the shear force at point C Determine the bending moment at point Carrow_forwardThe shaft is supported by a smooth thrust bearing at A and smooth journal bearing at C. If d = 3 in., determine the absolute maximum bending stress in the shaft.arrow_forward
- The bar is subjected to a moment of M = 60 Nm. Determine the smallest radius r of the fillets so that an allowable bending stress of σallow = 240 MPa is not exceeded.arrow_forwardDetermine the variation in the width b as a function of x for the cantilevered beam that supports a uniform distributed load along its centerline so that it has the same maximum bending stress sallow throughout its length. Thebeam has a constant depth t.arrow_forwardThe shaft is supported by smooth journal bearings at A and B that only exert vertical reactions on the shaft. If d = 90 mm, determine the absolute maximum bending stress in the beam, and sketch the stress distribution acting over the cross section.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY