
Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.44SP
A
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A standard Carnot heat engine cycle is executed in a closed system between
the temperature limits of 320 and 1350 K, with air as the working fluid. The
pressures before and after the isothermal compression are 150 and 300
kPa, respectively. Sketch the TS diagram for this cycle.
If the net work output per cycle is 0.75 kJ, determine the efficiency of the
cycle and the heat transfer to the air
(working fluid) per cycle.
PROBLEM 10: A sleeve in the form of a circular tube of length L is Nut
placed around a bolt and fitted between washers at each end.
The nut is then turned until it is just snug.
Use material properties as follows:
For the sleeve, as = 21 x 106/°C and Es = 100 GPa
Washer
Bolt
·L·
Sleeve
Bolt head
For the bolt, αB = 10 × 10-6/°C and EB = 200 GPa.
1. Calculate the temperature rise that is required to produce a compressive stress of 25 MPa in the sleeve.
This problem illustrates that the factor of safety for a machine element depends on the particular point selected for
analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and
B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces
F = 1.100 kN, P = 8.00 kN, and T = 50.00 N·m. Given: Sy = 280 MPa.
B
-100 mm-
15-mm D.
a) What is the value of the axial stress at point A?
b)What is the value of the shear stress at point A?
c)Determine the value of the Von Mises stress at
point A.
P
F
Chapter 11 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 11 - Prob. 11.1PCh. 11 - A rectangular ASTM A36 steel bar 2 in. by 6 in. in...Ch. 11 - Calculate Poisson’s ratio for a cast iron that has...Ch. 11 - Modulus of elasticity, modulus of rigidity, and...Ch. 11 - Compute all the dimensional changes for the steel...Ch. 11 - A surveyor’s steel tape is exactly 100ft long...Ch. 11 - An aluminum wire is stretched between two rigid...Ch. 11 - Prob. 11.8PCh. 11 - A concrete roadway pavement is placed in 60ftlong...Ch. 11 - Prob. 11.10P
Ch. 11 - A 4in. -by- 8in . short wood post is reinforced on...Ch. 11 - A short post. 150mm by 150mm , of Douglas fir, is...Ch. 11 - The cables of a power line are copper-coated steel...Ch. 11 - Prob. 11.14PCh. 11 - For the short column shown, assuming that lateral...Ch. 11 - A 1.0 -in.-diameter hole is drilled on the...Ch. 11 - Prob. 11.17PCh. 11 - A long, flat steel bar 4 in. wide and 38 thick is...Ch. 11 - A long, flat steel bar 5 in. wide and 38 thick has...Ch. 11 - 11.20 An aluminum specimen of circular cross...Ch. 11 - Prob. 11.21PCh. 11 - Prob. 11.22PCh. 11 - 11.23 A concrete cylinder, -in, in diameter, was...Ch. 11 - Prob. 11.24PCh. 11 - For the element of Problem 11.24: a. Locate the...Ch. 11 - Prob. 11.26CPCh. 11 - Prob. 11.27CPCh. 11 - Prob. 11.28CPCh. 11 - Prob. 11.29CPCh. 11 - A 50 -mm-diameter ASTM A36 steel rod is subjected...Ch. 11 - A 4 -ft-long square ASTM A36 steel bar, 2 in. by 2...Ch. 11 - A concrete test cylinder is 150 mm in diameter and...Ch. 11 - A 14 -in.-long steel rod, 112 in diameter, was...Ch. 11 - Determine the change in the diameter of an ASTM...Ch. 11 - 11.35 The steel bar shown in Figure 11.3 (see...Ch. 11 - Compute the change in the thickness of the ASTM...Ch. 11 - The steel rails of a railroad track are laid in...Ch. 11 - A rolled brass rod and a steel rod are secured to...Ch. 11 - 11.39 A -m-long steel member is set snugly between...Ch. 11 - 11.40 The distance between two fixed points on a...Ch. 11 - A steel truss is loaded as shown. The...Ch. 11 - 11.42 For the truss of Problem 5.25, the members...Ch. 11 - A surveyor’s steel tape has a cross-sectional area...Ch. 11 - A 1 -in.-diameter ASTM A36 steel tie rod, 30 ft...Ch. 11 - 11.45 A copper wire is held taut between two...Ch. 11 - 11.46 A horizontal steel member is anchored at...Ch. 11 - 11.47 Three vertical steel wires are loaded as...Ch. 11 - 11.48 Assume for Problem 11.47 that the same load...Ch. 11 - The rod shown is firmly attached to rigid...Ch. 11 - 11.50 A structural steel bar mm in width and mm...Ch. 11 - A redwood timber member having a 16 -in.-square...Ch. 11 - A steel pipe has an outside diameter of 12 in. and...Ch. 11 - A short 14 -in.-square concrete pier is reinforced...Ch. 11 - An ASTM A36 steel rod, 375.06 mm long and having a...Ch. 11 - An aluminum rod with an area of 1.5in.2 and an...Ch. 11 - A solid brass cylinder with a cross-sectional area...Ch. 11 - Three 14 in.-diameter wires are symmetrically...Ch. 11 - Rework Problem 11.57 with outer wires of aluminum,...Ch. 11 - Three rods support a weight, as shown. The...Ch. 11 - A flat steel bar 4 in. wide and 12 thick must be...Ch. 11 - A 19 -mm-diameter hole is drilled on the...Ch. 11 - A flat bar is 38 thick and has a centrally located...Ch. 11 - A long, flat steel bar 125 mm wide and 10 mm thick...Ch. 11 - 11.64 A short -in.-diameter compression member is...Ch. 11 - Prob. 11.65SPCh. 11 - 11.66 A rectangular block of wood, in. by in. in...Ch. 11 - 11.67 A -mm-diameter rod is subjected to an axial...Ch. 11 - The rectangular plate shown is subjected to a...Ch. 11 - A wood block, subjected to a tensile load, fails...Ch. 11 - Prob. 11.70SPCh. 11 - A shaft in a speed-reduction mechanism is loaded...Ch. 11 - An axially loaded 50 -mm-by- 75 -mm steel bar has...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The three steel wires, each of cross-sectional area 0.05 in2, support the weight W. Theirunstressed lengths are 74.98 ft, 74.99 ft, and 75.00 ft. Use E = 29 x 106 psi.1. Find the stress (psi) in the longest wire if W = 1500 lb.2. Determine the stress in the shortest wire if W = 500 lb ANSWERS: 6130 psi; 6930 psiarrow_forward1: The concrete column is reinforced using four steel reinforcing rods, each having a diameter of 18 mm. Determine the stress in the concrete and the steel if the column is subjected to an axial load of 800 kN. Est = 200 GPa, Ec = 25 GPa. Complete fbd.arrow_forward5: As shown, two aluminum rods AB and BC, hinged to rigid supports, arepinned together at B to carry a vertical load P = 6000 lb. If each rod has a crosssectional area of 0.60 in2 and E = 10 x 106 psi. Use α = θ = 30⁰. Calculate the change in length (in) of rod AB and indicate if it elongates orshortens. Calculate the vertical displacement of B (in) and horizontal displacement of B (in). Complete fbd.arrow_forward
- 2: The rigid bar supports the uniform distributedload of 6 kip/ft. Determine the force in each cable if each cable has a cross-sectional area of 0.05 in^2 , and E = 31(10)^3 ksi.arrow_forwardIn (Figure 1), take m₁ = 4 kg and mB = 4.6 kg. Determine the z component of the angular momentum Ho of particle A about point O. Determine the z component of the angular momentum Ho of particle B about point O. Suppose that 5 m 8 m/s 4 m 1.5 m 4 m B MB 1 m 2 m 5 30° 6 m/s MAarrow_forwardThe two disks A and B have a mass of 4 kg and 6 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.75. Suppose that (VA)1 = 6 m/s, (VB)₁ = 7 m/s. (Figure 1) Determine the magnitude of the velocity of A just after impact. Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Determine the magnitude of the velocity of B just after impact. Determine the angle between the x axis and the velocity of B just after impact, measured clockwise from the positive x axis. (VB)1 B (VA)1 60° Line of impactarrow_forward
- A hot plane surface is maintained at 100°C, and it is exposed to air at 25°C.The combined heat transfer coefficient between the surface and the air is 25W/m²·K. (same as above). In this task, you are asked to design fins to cool asurface by attaching 3 cm-long, 0.25 cm-diameter aluminum pin fins (thermalconductivity, k = 237 W/m·K) with a center-to-center distance of 0.6 cm. (Tip:do not correct the length). Determine the rate of heat transfer from thefinned structure to the air for a 1 m x 1 m section of the plate.arrow_forwardHeat is generated uniformly in a 4 cm-diameter, 16-cm long solid bar (k=2.4 W/m-K). The temperaturesat the center and at the surface of the bar are measured to be 210 oC and 45 oC, respectively. Calculatethe rate of heat generation within the bar. Solve the relevant energy balance equation and the boundaryconditions to calculate the rate of heat generation within the bar. (6 pts)arrow_forwardA hot plane surface is maintained at 100°C, and it is exposed to air at 25°C. The combined heat transfercoefficient between the surface and the air is 25 W/m²·K. You are tasked with designing an insulatingmaterial to cover the surface in order to reduce the heat transfer rate by 90%, meaning only 10% of theheat transfer would occur compared to the situation without insulation. The available insulating materialhas a thermal conductivity of 0.093 W/m·K. Assuming that the heat transfer coefficient and the surface/airtemperatures remain constant, calculate the required thickness of the insulating material in centimeters.arrow_forward
- The euler parameter in the image describes the orientation of N in the reference frame of U. How do I find the euler parameters that describe the orientation of U in the reference frame of N from the given information in the image.arrow_forwardFpull Ө A person, weighing 155 lb, is being lifted by a rope thrown. over a tree branch as shown (drawing not to scale). If the static coefficient of friction between the rope and the tree branch is us = 0.67, and the 0 = 45°. Determine the pulling force required to start lifting the person and the pulling force required to keep the person from falling? Pulling force to lift the person: Pulling force to keep the person from falling: lb lbarrow_forwardThe car weighs 1630 lbs and drives up the hill at a constant speed. Assuming the static friction coefficient between the wheels and the road is μs = 0.64, determine the steepest angle that the car can climb without slipping if it is.... a.) rear wheel drive b.) front wheel drive c.) four wheel drive a C CC ①⑧ BY NC Dr. Jacob Moore Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.75 ft b 3.325 ft C 1.66 ft a.) The steepest angle for rear wheel drive is 0 max degrees. b.) The steepest angle for front wheel drive is Omax degrees. c.) The steepest angle for four wheel drive is Omax degrees. = = =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license