Concept explainers
(a)
Interpretation:
The hybridization change of boron in the following reaction is to be determined.
Concept introduction:
The atomic orbital is the wave function that is used to find the probability to find an electron around the nucleus of an atom. It is the space around the nucleus of an atom where the electrons are supposed to be found.
Hybridization is the process of intermixing of atomic orbital of slightly different energies to form hybrid orbitals that have similar energy. These orbital have lower energy and more stability than the atomic orbital.
Hybridization of the central atom can be determined from the number of electron groups around the central atom in the Lewis structure of the molecule. Single bond, double bond, triple bond and lone pair all are considered as single electron group.
(a)
Answer to Problem 11.44P
The hybridization of boron changes from
Explanation of Solution
The Lewis structure of
Boron forms three single bonds with three fluorine atoms so three hybrid orbitals are required and therefore the hybridization of boron in
The Lewis structure of
Boron forms four single bonds with four fluorine atoms so four hybrid orbitals are required and therefore the hybridization of boron in
The hybridization of boron changes from
Hybridization is determined from the number of electron groups around the central atom in the Lewis structure of the molecule.
(b)
Interpretation:
The hybridization change for phosphorus in the following reaction is to be determined.
Concept introduction:
The atomic orbital is the wave function that is used to find the probability to find an electron around the nucleus of an atom. It is the space around the nucleus of an atom where the electrons are supposed to be found.
Hybridization is the process of intermixing of atomic orbital of slightly different energies to form hybrid orbitals that have similar energy. These orbital have lower energy and more stability than the atomic orbital.
Hybridization of the central atom can be determined from the number of electron groups around the central atom in the Lewis structure of the molecule. Single bond, double bond, triple bond and lone pair all are considered as single electron group.
(b)
Answer to Problem 11.44P
The hybridization of phosphorus changes from
Explanation of Solution
The Lewis structure of
Phosphorus forms three single bonds with three chlorine atoms and has a lone pair on it so four hybrid orbitals are required and therefore the hybridization of phosphorus in
The Lewis structure of
Phosphorus forms five single bonds with five chlorine atoms so five hybrid orbitals are required and therefore the hybridization of phosphorus in
The hybridization of phosphorus changes from
Hybridization is determined from the number of electron groups around the central atom in the Lewis structure of the molecule.
(c)
Interpretation:
The hybridization change for carbon in the following reaction is to be determined.
Concept introduction:
The atomic orbital is the wave function that is used to find the probability to find an electron around the nucleus of an atom. It is the space around the nucleus of an atom where the electrons are supposed to be found.
Hybridization is the process of intermixing of atomic orbital of slightly different energies to form hybrid orbitals that have similar energy. These orbital have lower energy and more stability than the atomic orbital.
Hybridization of the central atom can be determined from the number of electron groups around the central atom in the Lewis structure of the molecule. Single bond, double bond, triple bond and lone pair all are considered as single electron group.
(c)
Answer to Problem 11.44P
The hybridization of carbon changes from
Explanation of Solution
The Lewis structure of acetylene is as follows:
Carbon forms one triple bond with other carbon atom and one single bond with hydrogen atom so two hybrid orbitals are required and therefore the hybridization of carbon in acetylene is
The Lewis structure of ethene is as follows:
Carbon forms two single bonds with two hydrogen atoms and one double bond with another carbon atom so three hybrid orbitals are required and therefore the hybridization of carbon in ethene is
The hybridization of carbon changes from
Hybridization is determined from the number of electron groups around the central atom in the Lewis structure of the molecule.
(d)
Interpretation:
The hybridization change for silicon in the following reaction is to be determined.
Concept introduction:
The atomic orbital is the wave function that is used to find the probability to find an electron around the nucleus of an atom. It is the space around the nucleus of an atom where the electrons are supposed to be found.
Hybridization is the process of intermixing of atomic orbital of slightly different energies to form hybrid orbitals that have similar energy. These orbital have lower energy and more stability than the atomic orbital.
Hybridization of the central atom can be determined from the number of electron groups around the central atom in the Lewis structure of the molecule. Single bond, double bond, triple bond and lone pair all are considered as single electron group.
(d)
Answer to Problem 11.44P
The hybridization of silicon changes from
Explanation of Solution
The Lewis structure of
Silicon forms four single bonds with four fluorine atoms so four hybrid orbitals are required and therefore the hybridization of silicon in
The Lewis structure of
Silicon forms six single bonds with six fluorine atoms so six hybrid orbitals are required and therefore the hybridization of silicon in
The hybridization of silicon changes from
Hybridization is determined from the number of electron groups around the central atom in the Lewis structure of the molecule.
(e)
Interpretation:
The hybridization of sulphur in the following reaction is to be determined.
Concept introduction:
The atomic orbital is the wave function that is used to find the probability to find an electron around the nucleus of an atom. It is the space around the nucleus of an atom where the electrons are supposed to be found.
Hybridization is the process of intermixing of atomic orbital of slightly different energies to form hybrid orbitals that have similar energy. These orbital have lower energy and more stability than the atomic orbital.
Hybridization of the central atom can be determined from the number of electron groups around the central atom in the Lewis structure of the molecule. Single bond, double bond, triple bond and lone pair all are considered as single electron group.
(e)
Answer to Problem 11.44P
There is no change in the hybridization of sulphur.
Explanation of Solution
The Lewis structure of
Sulphur forms one single, one double bond with two oxygen atoms separately. It has a lone pair of electrons on it. So three hybrid orbitals are required and therefore the hybridization of sulphur in
The Lewis structure of
Sulphur forms two single bonds and one double bond with three oxygen atoms separately so three hybrid orbitals are required and therefore the hybridization of sulphur in
The hybridization of sulphur remains the same in going from
Hybridization is determined from the number of electron groups around the central atom in the Lewis structure of the molecule.
Want to see more full solutions like this?
Chapter 11 Solutions
CHEMISTRY >CUSTOM<
- 4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward
- 1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forwardThe following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forwardSelect all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward
- 3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forwardQuestion 2 of 25 point Question Attempt 3 of Ulimited Draw the structure for 3-chloro-4-ethylheptane. Part 2 of 3 Click and drag to start drawing a structure. Draw the structure for 1-chloro-4-ethyl-3-lodooctane. Click and drag to start drawing a structure. X G X B c Part 3 of 30 Draw the structure for (R)-2-chlorobutane. Include the stereochemistry at all stereogenic centers. Check Click and drag to start drawing a structure. G X A 。 MacBook Pro G P Save For Later Submit Assignment Privacyarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- In a silicon and aluminum alloy, with 12.6% silicon, what are the approximate percentages of the phases present in the constituent that is formed at the end of solidification? Temperature (°C) 1500 1000 L B+L 1415- α+L 577' 500 1.65 12.6 99.83 α+B B 0 Al 20 40 60 Weight percent silicon 80 Siarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY