(a)
Interpretation:
Condensed formula for 2-methyl-2-hexene has to be drawn.
Concept Introduction:
Organic compounds can be drawn from its IUPAC name. Initially, the parent chain is identified from the IUPAC name. After that the carbon chain is drawn with carbon atoms alone. Next step is to add the substituents in the respective positions as indicated in the IUPAC name. Remaining valency of carbon atom is satisfied by adding correct number of hydrogen atoms.
Condensed structural formula is a simplified form of representation of a molecule. This gives the information about all the atoms present in molecule and the atoms are placed in sequential order which gives information about which atom is bonded to other atom.
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given IUPAC name is 2-methyl-2-hexene. From this the parent
Numbering of each carbon has to be done as shown,
From the name it is understood that a double bond is present between carbon-2 and carbon-3.
Substituent that is present is a methyl group on carbon-2.
Remaining valency of carbon atom has to be balanced by adding hydrogen atoms.
Condensed formula can be obtained as shown below,
Condensed formula for 2-methyl-2-hexene is drawn as shown.
(b)
Interpretation:
Condensed formula for trans-3-heptene has to be drawn.
Concept Introduction:
Refer part (a).
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given IUPAC name is trans-3-heptene. From this the parent alkane is identified as heptane. Heptane contains seven carbon atoms.
Numbering of each carbon has to be done as shown,
From the name it is understood that a double bond is present between carbon-3 and carbon-4.
As the stereo information is given as trans-, the hydrogen atom that is bonded to the carbon atoms across the double bond has to be in opposite side. Remaining valency of carbon atom has to be balanced by adding hydrogen atoms.
Condensed formula can be obtained as shown below,
Condensed formula for trans-3-heptene is drawn as shown.
(c)
Interpretation:
Condensed formula for cis-1-chloro-2-pentene has to be drawn.
Concept Introduction:
Refer part (a).
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given IUPAC name is cis-1-chloro-2-pentene. From this the parent alkane is identified as pentane. Pentane contains five carbon atoms.
Numbering of each carbon has to be done as shown,
From the name it is understood that a double bond is present between carbon-2 and carbon-3.
As the stereo information is given as cis-, the hydrogen atom that is bonded to the carbon atoms across the double bond has to be in same side. Subsituents present in the given name is a chlorine atom in on carbon-1. Remaining valency of carbon atom has to be balanced by adding hydrogen atoms.
Condensed formula can be obtained as shown below,
Condensed formula for cis-1-chloro-2-pentene is drawn as shown.
(d)
Interpretation:
Condensed formula for cis-2-chloro-2-methyl-3-heptene has to be drawn.
Concept Introduction:
Refer part (a).
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given IUPAC name is cis-2-chloro-2-methyl-3-heptene. From this the parent alkane is identified as heptane. Heptane contains seven carbon atoms.
Numbering of each carbon has to be done as shown,
From the name it is understood that a double bond is present between carbon-3 and carbon-4.
As the stereo information is given as cis-, the hydrogen atom that is bonded to the carbon atoms across the double bond has to be in same side. Substituents present in the given name are a chlorine atom in on carbon-2 and methyl group on carbon-2. Remaining valency of carbon atom has to be balanced by adding hydrogen atoms.
Condensed formula can be obtained as shown below,
Condensed formula for cis-2-chloro-2-methyl-3-heptene is drawn as shown.
(e)
Interpretation:
Condensed formula for trans-5-bromo-2,6-dimethyl-3-octene has to be drawn.
Concept Introduction:
Refer part (a).
(e)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given IUPAC name is trans-5-bromo-2,6-dimethyl-3-octene. From this the parent alkane is identified as octane. Octane contains eight carbon atoms.
Numbering of each carbon has to be done as shown,
From the name it is understood that a double bond is present between carbon-3 and carbon-4.
As the stereo information is given as trans-, the hydrogen atom that is bonded to the carbon atoms across the double bond has to be in opposite side. Substituents present in the given name are a bromine atom in on carbon-5, a methyl group on carbon-2, and a methyl group on carbon-6. Remaining valency of carbon atom has to be balanced by adding hydrogen atoms.
Condensed formula can be obtained as shown below,
Condensed formula for trans-5-bromo-2,6-dimethyl-3-octene is drawn as shown.
Want to see more full solutions like this?
Chapter 11 Solutions
GENERAL,ORGANIC,+BIOCHEMISTRY
- Carbohydrates- Draw out the Hawthorne structure for a sugar from the list given in class. Make sure to write out all atoms except for carbons within the ring. Make sure that groups off the carbons in the ring are in the correct orientation above or below the plane. Make sure that bonds are in the correct orientation. Include the full name of the sugar. You can draw out your curve within the text box or upload a drawing below.arrow_forwardHow many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- * How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forwardYou are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forwardPredict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)