
Concept explainers
(a)
Interpretation:
Balanced
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(a)

Answer to Problem 11.21EP
Balanced nuclear equation is,
Explanation of Solution
Given decay reaction is polonium-210 to lead-206. The atomic number of polonium is 82. Atomic number of lead is 82. Therefore, the nuclear equation for this decay reaction can be given as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. Considering this, the particle that is emitted is found to contain 4 as superscript and 2 as subscript. This means it is an alpha particle. Therefore, the given decay reaction is classified as alpha decay. The balanced nuclear equation can be given as shown below,
(b)
Interpretation:
Balanced nuclear equation for decay reaction of thorium-225 to protactinium-225 has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(b)

Answer to Problem 11.21EP
Balanced nuclear equation is,
Explanation of Solution
Given decay reaction is thorium-225 to protactinium-225. The atomic number of thorium is 90. Atomic number of protactinium is 91. Therefore, the nuclear equation for this decay reaction can be given as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. Considering this, the particle that is emitted is found to contain 0 as superscript and -1 as subscript. This means it is a beta particle. Therefore, the given decay reaction is classified as beta decay. The balanced nuclear equation can be given as shown below,
(c)
Interpretation:
Balanced nuclear equation for decay reaction of Pt-190 to Os-186 has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(c)

Answer to Problem 11.21EP
Balanced nuclear equation is,
Explanation of Solution
Given decay reaction is Pt-190 to Os-186. The atomic number of platinum is 78. Atomic number of osmium is 76. Therefore, the nuclear equation for this decay reaction can be given as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. Considering this, the particle that is emitted is found to contain 4 as superscript and 2 as subscript. This means it is an alpha particle. Therefore, the given decay reaction is classified as alpha decay. The balanced nuclear equation can be given as shown below,
(d)
Interpretation:
Balanced nuclear equation for decay reaction of O-19 to F-19 has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(d)

Answer to Problem 11.21EP
Balanced nuclear equation is,
Explanation of Solution
Given decay reaction is O-19 to F-19. The atomic number of oxygen is 8. Atomic number of fluorine is 9. Therefore, the nuclear equation for this decay reaction can be given as,
The sum of subscript on both sides has to be equal and the sum of superscript on both sides has to be equal. Considering this, the particle that is emitted is found to contain 0 as superscript and -1 as subscript. This means it is a beta particle. Therefore, the given decay reaction is classified as beta decay. The balanced nuclear equation can be given as shown below,
Want to see more full solutions like this?
Chapter 11 Solutions
General, Organic, And Biological Chemistry, Hybrid (with Owlv2 Quick Prep For General Chemistry Printed Access Card)
- Predict the reactants used in the formation of the following compounds using Acid-Catalyzed dehydration reactionarrow_forwardCan I please get help with this?arrow_forward.. Give the major organic product(s) for each of the following reactions or sequences of reactions. Show ll relevant stereochemistry [3 ONLY]. A H Br 1. NaCN 2 NaOH, H₂O, heat 3. H3O+ B. CH₂COOH 19000 1. LiAlH4 THF, heat 2 H₂O* C. CH Br 1. NaCN, acetone 2 H3O+, heat D. Br 1. Mg. ether 3. H₂O+ 2 CO₂ E. CN 1. (CH) CHMgBr, ether 2 H₂O+arrow_forward
- Assign this COSY spectrumarrow_forwardCan I please get help with this?arrow_forward1. Draw structures corresponding to each of the following names [3 ONLY]: A. 2,2,2-trichloroethanal (chloral). B. trans-3-isopropylcyclohexanecarbaldehyde C. What is the correct structure for 2-hydroxyacetophenone? Circle the letter of your response. a C 0 OH OH OH HO b. H3C CH 0 H d OH D. Provide IUPAC names for each structure below. 0 H C-H 0 0 CH3 H NO₂ E. The substance formed on addition of water to an aldehyde or ketone is called a hydrate or a/an: a. vicinal diol b. geminal diol C. acetal d. ketalarrow_forward
- Assign this spectrumarrow_forwardRedraw the tripeptide with or without its acidic hydrogensto demonstrate where the total charge of -2 comes from: *see imagearrow_forward2. Consider the data below to answer the following questions. Cyanohydrins are important intermediates in the synthesis of α-hydroxycarboxylic acids from ketones and aldehydes. The nitrile functional group can be hydrolyzed by aqueous acid to yield a carboxylic acid. Nitriles can also be hydrolyzed to carboxylic acids using aqueous base. Unfortunately, when a cyanohydrin is treated with aqueous base the original carbonyl compound is isolated. OH CH-COOH 0 HO CN C H30* C. H H HC N NaOH H₂O C=O 0 cyanohydrin H + NaCN + H₂Oarrow_forward
- Assign all integrated peaksarrow_forward- Consider the data in the Table below to answer the following questions: Acidities of Substituted Benzoic and Acetic Acids pk,s at 25C Y-CH COOH Y Y - CH₂COOH meta para H 4.75 4.19 4.19 2.47 3.64 3.55 3.57 4.09 4.46 CN OCH 3 A. Draw the structure of the strongest acid in the table above. B. Explain why cyanoacetic acid and methoxyacetic acid are more acidic than their correspondingly substituted benzoic acid counterparts.arrow_forwardDraw the curved arrow mechanism for this reaction starting with 2-propanol in sulfuric acid. Show all nonzero formal charges and all nonbonded electrons in each step. Species not involved in a particular step do not need to be included in that step, and resonance forms do not need to be shown. Note that the alcohol is in much higher concentration than H₂O in this reaction. Harrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax




