
(a)
Interpretation:
An example for Dipole-Dipole interaction, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(a)

Explanation of Solution
An example for Dipole-Dipole interaction is between
The intermolecular force existing between
The ions present in
These two ionic species constitute a dipole in the molecule. So, the interaction existing between
(b)
Interpretation:
An example for Dipole-induced dipole, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(b)

Explanation of Solution
An example for Dipole-induced dipole interaction is between a helium atom (non-polar species) and a polar molecule which is in proximity to it.
The intermolecular force existing between a polar molecule and a helium atom is Dipole-induced dipole interaction.
A polar molecule has permanent dipole moment which can cause distortion to the spherical electronic distribution of helium atom. The extend of distortion depends on the strength of the polarizability of the polar molecular species. The distortion caused in the helium atom is the dipole moment which has been induced or created by the interaction with a polar molecule. So such an interaction is known as dipole-induced-dipole moment.
(c)
Interpretation:
An example for Ion-Dipole interaction, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(c)

Explanation of Solution
An example for Ion-Dipole interaction is between metal ions and water molecules which can be observed in the aqueous solutions of metal ions.
In the aqueous solutions of metal ions, metal ions are ionic species and water molecules are polar molecules. So, water molecules possess permanent dipole moment. Hence, the interaction between metal ions and water molecules is Ion-Dipole interaction.
(d)
Interpretation:
An example for dispersion forces, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(d)

Explanation of Solution
An example for dispersion force is between
(e)
Interpretation:
An example for Van der waals forces, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(e)

Explanation of Solution
Van der waals forces are intermolecular forces which are of two types: Stronger and weaker.
Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
An example for Dipole-Dipole interaction is between
An example for dispersion force is between
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry
- Li+ is a hard acid. With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiClarrow_forwardQ4: Write organic product(s) of the following reactions and show the curved-arrow mechanism of the reactions. Br MeOH OSO2CH3 MeOHarrow_forwardProvide the correct IUPAC name for the compound shown here. Reset cis- 5- trans- ☑ 4-6- 2- 1- 3- di iso tert- tri cyclo sec- oct but hept prop hex pent yl yne ene anearrow_forward
- Q6: Predict the major product(s) for the following reactions. Note the mechanism (SN1, SN2, E1 or E2) the reaction proceeds through. If no reaction takes place, indicate why. Pay attention to stereochemistry. NaCN DMF Br σ Ilm... Br H Br H H NaCN CH3OH KOtBu tBuOH NaBr H₂O LDA Et2O (CH3)2CHOH KCN DMSO NaOH H₂O, A LDA LDA Systemarrow_forwardQ7: For the following reactions, indicate the reaction conditions that would provide the indicated product in a high yield. Note the major reaction pathway that would take place (SN1, SN2, E1, or E2) Note: There may be other products that are not shown. There maybe more than one plausible pathway. Br H3C OH H3C CI ... H3C SCH2CH3 CI i SCH2CH3 ཨ་ Br System Settarrow_forwardQ2: Rank the compounds in each of the following groups in order of decreasing rate of solvolysis in aqueous acetone. OSO2CF3 OSO2CH3 OH a. b. CI Brarrow_forward
- ох 4-tert-butyl oxy cyclohex-1-ene Incorrect, 1 attempt remaining The systematic name of this compound classifies the -OR group as a substituent of the hydrocarbon, which is considered the principal functional group. The ether substituent is named with the suffix 'oxy'. The general format for the systematic name of a hydrocarbon is: [prefix/substituent] + [parent] + [functional group suffix] Substituents are listed in alphabetical order. Molecules with a chiral center will indicate the absolute configuration at the beginning of its name with the R and S notation.arrow_forward5. Compressibility (6 points total). The isothermal compressibility is a measure of how hard/easy it is to compress an object (how squishy is it?) at constant temperature. It is др defined as Br=-()=-(200²)T' (a) You might wonder why there is a negative sign in this formula. What does it mean when this quantity is positive and what does it mean when this quantity is negative? (b) Derive the formula for the isothermal compressibility of an ideal gas (it is very simple!) (c) Explain under what conditions for the ideal gas the compressibility is higher or lower, and why that makes sense.arrow_forward19. (3 pts) in Chapter 7 we will see a reaction of halocyclohexanes that requires that the halogen occupy an axial position with this in mind, would you expect cis-1-bromo-3-methylcyclohexane or trans-1-bromo-3-methylcyclohexane to be more reactive in this reaction? Briefly explain your choice using structures to support your answer. Mere-eries-cecleone) The tran-i-browse-3-methylcyclohexionearrow_forward
- Please help me calculate the undiluted samples ppm concentration. My calculations were 280.11 ppm. Please see if I did my math correctly using the following standard curve. Link: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EVSJL_W0qrxMkUjK2J3xMUEBHDu0UM1vPKQ-bc9HTcYXDQ?e=hVuPC4arrow_forwardProvide an IUPAC name for each of the compounds shown. (Specify (E)/(Z) stereochemistry, if relevant, for straight chain alkenes only. Pay attention to commas, dashes, etc.) H₁₂C C(CH3)3 C=C H3C CH3 CH3CH2CH CI CH3 Submit Answer Retry Entire Group 2 more group attempts remaining Previous Nextarrow_forwardArrange the following compounds / ions in increasing nucleophilicity (least to most nucleophilic) CH3NH2 CH3C=C: CH3COO 1 2 3 5 Multiple Choice 1 point 1, 2, 3 2, 1, 3 3, 1, 2 2, 3, 1 The other answers are not correct 0000arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




