(a)
Interpretation:
An example for Dipole-Dipole interaction, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(a)
Explanation of Solution
An example for Dipole-Dipole interaction is between
The intermolecular force existing between
The ions present in
These two ionic species constitute a dipole in the molecule. So, the interaction existing between
(b)
Interpretation:
An example for Dipole-induced dipole, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(b)
Explanation of Solution
An example for Dipole-induced dipole interaction is between a helium atom (non-polar species) and a polar molecule which is in proximity to it.
The intermolecular force existing between a polar molecule and a helium atom is Dipole-induced dipole interaction.
A polar molecule has permanent dipole moment which can cause distortion to the spherical electronic distribution of helium atom. The extend of distortion depends on the strength of the polarizability of the polar molecular species. The distortion caused in the helium atom is the dipole moment which has been induced or created by the interaction with a polar molecule. So such an interaction is known as dipole-induced-dipole moment.
(c)
Interpretation:
An example for Ion-Dipole interaction, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(c)
Explanation of Solution
An example for Ion-Dipole interaction is between metal ions and water molecules which can be observed in the aqueous solutions of metal ions.
In the aqueous solutions of metal ions, metal ions are ionic species and water molecules are polar molecules. So, water molecules possess permanent dipole moment. Hence, the interaction between metal ions and water molecules is Ion-Dipole interaction.
(d)
Interpretation:
An example for dispersion forces, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(d)
Explanation of Solution
An example for dispersion force is between
(e)
Interpretation:
An example for Van der waals forces, has to be given.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Van der waals forces.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Van der waals forces are intermolecular forces which are of two types: Stronger and weaker. Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
(e)
Explanation of Solution
Van der waals forces are intermolecular forces which are of two types: Stronger and weaker.
Dipole-Dipole interaction is the strong Van der waals force and dispersion force is the weak Van der waals force.
An example for Dipole-Dipole interaction is between
An example for dispersion force is between
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry
- Consider the iodine monochloride molecule, ICI. Because chlorine is more electronegative than iodine, this molecule is a dipole. How would you expect iodine monochloride molecules in the gaseous state to orient themselves with respect to each other as the sample is cooled and the molecules begin to aggregate? Sketch the orientation you would expect.arrow_forwardExplain why liquids assume the shape of any container into which they are poured, whereas solids are rigid and retain their shape.arrow_forwardThe compounds ethanol (C2H5OH) and dimethyl ether (CH3OCH3) have the same molecular formula. Which is expected to have the higher surface tension? Why?arrow_forward
- Based on the type or types of intermolecular forces, predictthe substance in each pair that has the higher boiling point:(a) propane 1C3H82 or n-butane 1C4H102, (b) diethyl ether1CH3CH2OCH2CH32 or 1-butanol 1CH3CH2CH2CH2OH2,(c) sulfur dioxide 1SO22 or sulfur trioxide 1SO32, (d) phosgene1Cl2CO2 or formaldehyde 1H2CO2.arrow_forwardwhat about the molar energies of attraction associated with dipole- induced dipole interaction using HCl as an example?arrow_forwardThe substance with the lowest known boiling point (4 K) is helium, an atomic element that has two electrons. Hydrogen isa diatomic molecule and also has two electrons, but its boiling point is significantly higher, at 20.28 K.(a) What is the dominant intermolecular force between a pair of helium atoms and a pair of H2 molecules?(b) Why do you think H2 has a higher boiling point?arrow_forward
- Which of the following substances exhibits ion-dipole forces? K(s) KF(aq) H2O (l) glucose (C6H12O6 ) (aq) Xe (g)arrow_forwardTaking into account both the primary intermolecular force and polarizability, arrange the molecules in order of increasing strength of attraction between them. H H :Br: :Br: 小玉木林 H H H H H Br: :Br Br: H :CI: : Br: : Br: Substance A Aarrow_forward6,7arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,