Concept explainers
Students are testing their new drone to see if it can safely deliver packages to different departments on campus. Position data can be approximated using the expressions x(t) = −0.0000225t4 + 0.003t3 + 0.01t2 and
(a)
Plot the path of the drone and find the duration (t) of the flight.
Answer to Problem 11.182RP
The duration (t) of the flight is
Explanation of Solution
Given information:
The x coordinate is defined by the relation as
The y coordinate is defined by the relation as
Calculation:
The x coordinate is defined by the relation:
The y coordinate is defined by the relation:
Calculate the duration (t) of the flight:
Equate equation (2) to zero.
General solution for
Calculate the x coordinated as time (t) 0 sec.
Substitute 0 for t in Equation (1).
Similarly calculate the x coordinate for time interval of
Tabulate the calculated values of x coordinate for time interval
Time (t)(sec) | x(m) |
0 | 0.00 |
5 | 0.61 |
10 | 3.78 |
15 | 11.24 |
20 | 24.40 |
25 | 44.34 |
30 | 71.78 |
35 | 107.11 |
40 | 150.40 |
45 | 201.36 |
50 | 259.38 |
55 | 323.49 |
60 | 392.40 |
65 | 464.49 |
70 | 537.78 |
75 | 609.96 |
80 | 678.40 |
Plot the graph for time (t) and x coordinate as in Figure (1).
Calculate the y coordinated as time (t) 0 sec.
Substitute 0 for t in equation (1).
Similarly calculate the y coordinate for time interval of
Tabulate the calculated values of y coordinate for time interval
Time (t)(sec) | y(m) |
0 | 0.00 |
5 | 22.84 |
10 | 87.87 |
15 | 185.19 |
20 | 300.00 |
25 | 414.81 |
30 | 512.13 |
35 | 577.16 |
40 | 600.00 |
45 | 577.16 |
50 | 512.13 |
55 | 414.81 |
60 | 300.00 |
65 | 185.19 |
70 | 87.87 |
75 | 22.84 |
80 | 0.00 |
Plot the graph for time (t) and y coordinate as in Figure (2).
Tabulate the x and y coordinates value as in Table (3):
x(m) | y(m) |
0.00 | 0.00 |
0.61 | 22.84 |
3.78 | 87.87 |
11.24 | 185.19 |
24.40 | 300.00 |
44.34 | 414.81 |
71.78 | 512.13 |
107.11 | 577.16 |
150.40 | 600.00 |
201.36 | 577.16 |
259.38 | 512.13 |
323.49 | 414.81 |
392.40 | 300.00 |
464.49 | 185.19 |
537.78 | 87.87 |
609.96 | 22.84 |
678.40 | 0.00 |
Plot the graph for coordinate x and y as in Figure (3).
Therefore, the duration (t) of the flight is
(b)
The maximum speed
Answer to Problem 11.182RP
The maximum speed
Explanation of Solution
Given information:
The x coordinate is defined by the relation as
The y coordinate is defined by the relation as
Calculation:
Differentiate equation (1) with respective to time (t).
Since, the rate of change of any coordinate with respect to time is equal to the velocity.
Differentiate equation (3) with respective to time (t).
Since, the rate of change of velocity with respect to time is equal to the acceleration.
Calculate the time (t) at which the velocity is maximum:
Equate the equation (4) to zero,
Solve the above quadratic equation for the roots (t),
The roots are -1.093 sec and 67.76 sec. Reject the negative root.
Calculate the maximum speed
Substitute 67.76 sec for t in equation (3).
Therefore, the maximum speed
(c)
The maximum altitude
Answer to Problem 11.182RP
The maximum altitude
Explanation of Solution
Given information:
The x coordinate is defined by the relation as
The y coordinate is defined by the relation as
Calculation:
Calculate the maximum altitude
Refer Figure 2, the maximum altitude 600m at time 40 sec.
Substitute 40 sec in equation (2).
Calculate the horizontal
Substitute 80 sec for t in equation (1).
Therefore, the maximum altitude
Want to see more full solutions like this?
Chapter 11 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forward
- Question 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY