Concept explainers
Students are testing their new drone to see if it can safely deliver packages to different departments on campus. Position data can be approximated using the expressions
(a)
The duration of flight.
Answer to Problem 11.182RP
We got the time of flight is
Explanation of Solution
Given information:
Time
Concept used:
We shall draw graph (plot of path)
Calculation:
Following table is made-
t | 0.00 | 1.00 | 10.00 | 20.00 | 30.00 | 39.00 | 40.00 | 50.00 | 60.00 | 70.00 |
x(t) | 0.00 | 0.01 | 3.78 | 24.40 | 71.78 | 141.11 | 150.40 | 259.38 | 392.40 | 537.78 |
y(t) | 0.00 | 0.93 | 87.89 | 300.06 | 512.20 | 599.08 | 600.00 | 512.02 | 299.82 | 87.72 |
t | 79.00 | 80.00 | 81.00 | 82.00 |
x(t) | 665.15 | 678.40 | 691.38 | 704.07 |
y(t) | 0.91 | 0.00 | 0.94 | 3.73 |
Plot,
From above table and plot we get the take off and landing altitudes are the same at
Hence the time of flight is
Conclusion:
We got the time of flight is
(b)
The maximum speed in x direction.
Answer to Problem 11.182RP
We got the maximum horizontal speed
Explanation of Solution
Given information:
Time
Concept used:
Speed
For maximum speed
Calculation:
Speed
For maximum speed
On putting value of
Conclusion:
We got the maximum horizontal speed
(c)
The maximum altitude
The horizontal distance of the flight.
Answer to Problem 11.182RP
We get the maximum altitude,
And horizontal distance traveled,
Explanation of Solution
Given information:
Time
Concept used:
We shall draw graph (plot of path)
Calculation:
Following table is made-
t | 0.00 | 1.00 | 10.00 | 20.00 | 30.00 | 39.00 | 40.00 | 50.00 | 60.00 |
x(t) | 0.00 | 0.01 | 3.78 | 24.40 | 71.78 | 141.11 | 150.40 | 259.38 | 392.40 |
y(t) | 0.00 | 0.93 | 87.89 | 300.06 | 512.20 | 599.08 | 600.00 | 512.02 | 299.82 |
t | 70.00 | 79.00 | 80.00 | 81.00 | 82.00 |
x(t) | 537.78 | 665.15 | 678.40 | 691.38 | 704.07 |
y(t) | 87.72 | 0.91 | 0.00 | 0.94 | 3.73 |
Plot,
From above table and plot we get the maximum altitude,
And horizontal distance travelled,
Conclusion:
We get the maximum altitude,
And horizontal distance travelled,
Want to see more full solutions like this?
Chapter 11 Solutions
Vector Mechanics For Engineers
Additional Engineering Textbook Solutions
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Modern Database Management
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Mechanics of Materials (10th Edition)
Database Concepts (8th Edition)
- A 4 ft 300 Ib 1000 Ib.ft 350 Ib C 2 ft 3. 45° 250 Ib B. 3ft B 25ft 200 Ib 150 Ib Replace the force system acting on the frame shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forwardCan you research the standard percentage of Steam Quality in:(1.) Boiler - leaving boilerBoiler -> Out(2.) Condenser - coming in condenser In -> CondenserProvide reference Also define: steam quality, its purpose and importancearrow_forwardNumbers 1 and 2 and 5 are are optional problems. However, I only need the values (with units) of 3, 4 and 6. Thank you :)arrow_forward
- Three cables are pulling on a ring located at the origin, as shown in the diagram below. FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°. FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°. Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N. Specify the direction of FC using its coordinate direction angles.arrow_forwardturbomachieneryarrow_forwardauto controlsarrow_forward
- auto controlsarrow_forward1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY