Concept explainers
(a)
Interpretation: The dipeptide that is formed by transcription of the given DNA segment has to be predicted.
Concept introduction: DNA stands for deoxyribonucleic acid, is a biological macromolecule. DNA contains double helical strands along with the complementary base pairs. The four complementary bases of DNA are adenine, thymine, guanine and cytosine.
A compound possessing two amino acids joined together by one peptide bond is known as dipeptide. The amino acids present in the dipeptide are linked via peptide linkages.
(a)
Answer to Problem 11.138EP
The dipeptide that is formed by transcription of the given DNA segment is
Explanation of Solution
The given DNA base sequence is,
The transcription of the above given DNA sequence forms the new hnRNA segment which is given as,
The amino acid that specifies the first codon,
The amino acid that specifies the second codon,
Thus, the amino acid sequence or dipeptide that is formed by transcription of the given DNA segment is
(b)
Interpretation: The dipeptide that is formed if a point mutation converts
Concept introduction: DNA stands for deoxyribonucleic acid, is a biological macromolecule. DNA contains double helical strands along with the complementary base pairs. The four complementary bases of DNA are adenine, thymine, guanine and cytosine.
The process of permanently changing the
(b)
Answer to Problem 11.138EP
The dipeptide that is formed if a point mutation converts
Explanation of Solution
The given DNA base sequence is,
If point mutation occurs in the given DNA base sequence and converts
The new codon formed after the base pairing is given as,
The amino acid that specifies the first codon,
The amino acid that specifies the second codon,
Thus, the amino acid sequence or dipeptide that is formed after the point mutation of the given DNA segment is
(c)
Interpretation: The dipeptide that is formed if a point mutation converts
Concept introduction: DNA stands for deoxyribonucleic acid, is a biological macromolecule. DNA contains double helical strands along with the complementary base pairs. The four complementary bases of DNA are adenine, thymine, guanine and cytosine.
The process of permanently changing the nucleotide sequence of a genome of any organism is known as mutation. In point mutation, one base is replaced by another base in the given base pair sequence.
(c)
Answer to Problem 11.138EP
The dipeptide that is formed if a point mutation converts
Explanation of Solution
The given DNA base sequence is,
If point mutation occurs in the given DNA base sequence and converts
The new codon formed after the base pairing is given as,
The amino acid that specifies the first codon,
The amino acid that specifies the second codon,
Thus, the amino acid sequence or dipeptide that is formed after the point mutation of the given DNA segment is
(d)
Interpretation: The dipeptide that is formed if a point mutation converts
Concept introduction: DNA stands for deoxyribonucleic acid, is a biological macromolecule. DNA contains double helical strands along with the complementary base pairs. The four complementary bases of DNA are adenine, thymine, guanine and cytosine.
The process of permanently changing the nucleotide sequence of a genome of any organism is known as mutation. In point mutation, one base is replaced by another base in the given base pair sequence.
(d)
Answer to Problem 11.138EP
The dipeptide that is formed if a point mutation converts
Explanation of Solution
The given DNA base sequence is,
If point mutation occurs in the given DNA base sequence and converts
The new codon formed after the base pairing is given as,
The amino acid that specifies the first codon,
The amino acid that specifies the second codon,
Thus, the amino acid sequence or dipeptide that is formed after the point mutation of the given DNA segment is
Want to see more full solutions like this?
Chapter 11 Solutions
Organic And Biological Chemistry
- Please provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardA certain chemical reaction releases 24.7 kJ/g of heat for each gram of reactant consumed. How can you calculate what mass of reactant will produce 1460. J of heat? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols. mass M 0.0 x μ 00 1 Garrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning