![CHEMISTRY (LOOSELEAF) >CUSTOM<](https://www.bartleby.com/isbn_cover_images/9781264348992/9781264348992_largeCoverImage.gif)
Silicon used in computer chips must have an impurity level below 10−9 (that is, fewer than one impurity atom for every 109 Si atoms). Silicon is prepared by the reduction of quartz (SiO2) with coke (a form of carbon made by the destructive distillation of coal) at about 2000°C:
Next, solid silicon is separated from other solid impurities by treatment with hydrogen chloride at 350°C to form gaseous trichlorosilane (SiCl3H):
Finally, ultrapure Si can be obtained by reversing the above reaction at 1000°C:
(a) Trichlorosilane has a vapor pressure of 0.258 atm at −2°C. What is its normal boiling point? Is trichlorosilane’s boiling point consistent with the type of intermolecular forces that exist among its molecules? (The molar heat of vaporization of trichlorosilane is 28.8 kJ/mol.) (b) What types of crystals do Si and SiO2 form? (c) Silicon has a diamond crystal structure (see Figure 11.28). Each cubic unit cell (edge length a = 543 pm) contains eight Si atoms. If there are 1.0 × 1013 boron atoms per cubic centimeter in a sample of pure silicon, how many Si atoms are there for every B atom in the sample? Does this sample satisfy the 10−9 purity requirement for the electronic grade silicon?
Figure 11.28 (a) The structure of diamond. Each carbon is tetrahedrally bonded to four other carbon atoms. (b) The structure of graphite. The distance between successive layers is 335 pm.
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The normal boiling point of trichlorosilane and its adherence to its intermolecular forces have to be found out and discussed.
Concept Introduction:
Boiling point is the temperature at which the vapor pressure will be in equilibrium with the external pressure which is normally
Vapour pressure: It is the pressure developed on the vapor when it is in contact with its liquid form or solid form. So, it is also known as equilibrium vapor pressure which establishes equilibrium between its gaseous vapor state and liquid state or solid state.
The trends of boiling points are only due to the strength of the intermolecular forces that are acting between the molecules of the given compounds.
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles and hence binds all the molecules of a definite physical state such as solid, liquid or gas state.
Explanation of Solution
The normal boiling point of trichlorosilane can be calculated using the Clausisus-Clapeyron equation:
The Clausius-Clapeyron equation:
Given:
Converting kilojoules into joules:
Converting temperature from Celsius to kelvin:
Substituting all these values in the Clausius-Clapeyron equation:
Converting the normal boiling point temperature from Kelvin into Celsius:
Therefore, the normal boiling point of trichlorosilane is
Intermolecular forces existing in trichlorosilane
There are three highly electronegative halogen atoms such as chlorine atoms in the trichlorosilane which are attached to the least electronegative atoms such as silicon and hydrogen atoms. So there will be permanent dipole moment in the molecule, due to the distinguishable electronegativity in it. Hence, the interactions between such molecules will be dipole-dipole interactions, which are strong intermolecular forces. Therefore, the normal boiling point is expected to be in positive integer, since more energy is required to break the strong intermolecular forces. The calculated boiling point of trichlorosilane is
(b)
![Check Mark](/static/check-mark.png)
Interpretation: The type of crystal formed by
Concept Introduction:
The major types of crystals are listed here:
- 1. Ionic crystals.
- 2. Covalent crystals.
- 3. Molecular crystals.
- 4. Metallic crystals.
Ionic crystals: The crystals that are composed of charged species such as anions and cations.
Covalent crystals: In covalent crystals, all the atoms will be connected in a three-dimensional network by covalent bonds.
Molecular crystals: In molecular crystal, the molecules occupying the lattice points will have attractive forces between them such as van der waals forces or hydrogen bonding.
Metallic crystals: All the lattice points are occupied by the same type of metal.
Explanation of Solution
(c)
![Check Mark](/static/check-mark.png)
Interpretation: The purity requirement for the electronic grade silicon, has to be checked out when boron atom is added to
Concept Introduction:
Silicon is being used in various electronic devices today, due its special and important properties such as superconducting property and electrical properties. Silicon can be doped which is a modification in its electrical properties. Silicon used in computer chips must have an impurity level below
Explanation of Solution
Given:
The edge length of cubic unit cell in the diamond structure of silicon is given as
Converting edge length from picometers into centimeters:
Calculating the volume of per unit cell:
The relation between edge length and volume is
So, the volume of per unit cell is
Calculating the number of unit cells per cubic centimetre:
Therefore, in the volume of
Calculating the number of
It is given that there are 8
So,
Thus, there will be
Calculating the purity of
Given that
It is now known that per centimetre sample of pure silicon have
So, per centimetre sample of pure silicon have
This implies that there will be fewer than one impurity atom for every
Want to see more full solutions like this?
Chapter 11 Solutions
CHEMISTRY (LOOSELEAF) >CUSTOM<
- Write the calculate the reaction quotient for the following system, if the partial pressure of all reactantsand products is 0.15 atm: NOCl (g) ⇌ NO (g) + Cl2 (g) H = 20.5 kcalarrow_forwardComplete the spectroscopy with structurearrow_forwardcould you answer the questions and draw the complete mechanismarrow_forward
- Complete the spectroscopy with structurearrow_forwardCalculate the reaction quotient for the reaction:NaOH (s) ⇌ Na+ (aq)+ OH- (aq) + 44.4 kJ [Na+] = 4.22 M [OH-] = 6.41 Marrow_forwardGiven the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forward
- Match each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forwardWrite the reaction quotient for: Pb2+(aq) + 2 Cl- (aq) ⇌ PbCl2(s)arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)