(a)
Interpretation:
In each of the given pairs of substances which one has lower melting point has to be explained.
Concept introduction:
Melting point:
The temperature at which a crystalline solid melts into a liquid is known as melting point.
Both melting point and boiling points are characteristic properties of the compound.
Types of solids give melting points of several substances.
Types of solid
- Molecular soli
- Metallic solid
- Ionic solid
- Covalent network
Molecular solid:
A solid which consist of atoms or molecule thought intermolecular force.
Metallic solid:
The solid which consist of metal atom held together by metallic bonds. Metallic bonding is
Ionic solid:
A solid which consist of anions and cations held together by ionic bond (electrical attraction of opposite charges).
Covalent network:
A solid that involves atoms held together by great network or shackles by covalent bonds.
Diamond and graphite are great example.
(b)
Interpretation:
In each of the given pairs of substances which one has lower melting point has to be explained.
Concept introduction:
Melting point:
The temperature at which a crystalline solid melts into a liquid is known as melting point.
Both melting point and boiling points are characteristic properties of the compound.
Types of solids give melting points of several substances.
Types of solid
- Molecular soli
- Metallic solid
- Ionic solid
- Covalent network
Molecular solid:
A solid which consist of atoms or molecule thought intermolecular force.
Metallic solid:
The solid which consist of metal atom held together by metallic bonds. Metallic bonding is chemical bond formed by attraction between cation of metal and the surrounding sea of electrons.
Ionic solid:
A solid which consist of anions and cations held together by ionic bond (electrical attraction of opposite charges).
Covalent network:
A solid that involves atoms held together by great network or shackles by covalent bonds.
Diamond and graphite are great example.
(c)
Interpretation:
In each of the given pairs of substances which one has lower melting point has to be explained.
Concept introduction:
Melting point:
The temperature at which a crystalline solid melts into a liquid is known as melting point.
Both melting point and boiling points are characteristic properties of the compound.
Types of solids give melting points of several substances.
Types of solid
- Molecular soli
- Metallic solid
- Ionic solid
- Covalent network
Molecular solid:
A solid which consist of atoms or molecule thought intermolecular force.
Metallic solid:
The solid which consist of metal atom held together by metallic bonds. Metallic bonding is chemical bond formed by attraction between cation of metal and the surrounding sea of electrons.
Ionic solid:
A solid which consist of anions and cations held together by ionic bond (electrical attraction of opposite charges).
Covalent network:
A solid that involves atoms held together by great network or shackles by covalent bonds.
Diamond and graphite are great example.
(d)
Interpretation:
In each of the given pairs of substances which one has lower melting point has to be explained.
Concept introduction:
Melting point:
The temperature at which a crystalline solid melts into a liquid is known as melting point.
Both melting point and boiling points are characteristic properties of the compound.
Types of solids give melting points of several substances.
Types of solid
- Molecular soli
- Metallic solid
- Ionic solid
- Covalent network
Molecular solid:
A solid which consist of atoms or molecule thought intermolecular force.
Metallic solid:
The solid which consist of metal atom held together by metallic bonds. Metallic bonding is chemical bond formed by attraction between cation of metal and the surrounding sea of electrons.
Ionic solid:
A solid which consist of anions and cations held together by ionic bond (electrical attraction of opposite charges).
Covalent network:
A solid that involves atoms held together by great network or shackles by covalent bonds.
Diamond and graphite are great example.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
General Chemistry
- The SN 1 mechanism starts with the rate-determining step which is the dissociation of the alkyl halide into a carbocation and a halide ion. The next step is the rapid reaction of the carbocation intermediate with the nucleophile; this step completes the nucleophilic substitution stage. The step that follows the nucleophilic substitution is a fast acid-base reaction. The nucleophile now acts as a base to remove the proton from the oxonium ion from the previous step, to give the observed product. Draw a curved arrow mechanism for the reaction, adding steps as necessary. Be sure to include all nonzero formal charges. Cl: Add/Remove step G Click and drag to start drawing a structure.arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardA monochromatic light with a wavelength of 2.5x10-7m strikes a grating containing 10,000 slits/cm. Determine the angular positions of the second-order bright line.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Us the reaction conditions provided and follow the curved arrow to draw the resulting structure(s). Include all lone pairs and charges as appropriate. H :I H 0arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning