An angler hangs a 4.50-kg fish from a vertical steel wire 1.50 m long and 5.00 × 10 −3 cm 2 in cross-sectional area. The upper end of the wire is securely fastened to a support. (a) Calculate the amount the wire is stretched by the hanging fish. The angler now applies a varying force F → at the lower end of the wire, pulling it very slowly downward by 0.500 mm from its equilibrium position. For this downward motion, calculate (b) the work done by gravity; (c) the work done by the force F → , (d) the work done by the force the wire exerts on the fish; and (e) the change in the elastic potential energy (the potential energy associated with the tensile stress in the wire). Compare the answers in parts (d) and (e).
An angler hangs a 4.50-kg fish from a vertical steel wire 1.50 m long and 5.00 × 10 −3 cm 2 in cross-sectional area. The upper end of the wire is securely fastened to a support. (a) Calculate the amount the wire is stretched by the hanging fish. The angler now applies a varying force F → at the lower end of the wire, pulling it very slowly downward by 0.500 mm from its equilibrium position. For this downward motion, calculate (b) the work done by gravity; (c) the work done by the force F → , (d) the work done by the force the wire exerts on the fish; and (e) the change in the elastic potential energy (the potential energy associated with the tensile stress in the wire). Compare the answers in parts (d) and (e).
An angler hangs a 4.50-kg fish from a vertical steel wire 1.50 m long and 5.00 × 10−3cm2 in cross-sectional area. The upper end of the wire is securely fastened to a support. (a) Calculate the amount the wire is stretched by the hanging fish. The angler now applies a varying force
F
→
at the lower end of the wire, pulling it very slowly downward by 0.500 mm from its equilibrium position. For this downward motion, calculate (b) the work done by gravity; (c) the work done by the force
F
→
, (d) the work done by the force the wire exerts on the fish; and (e) the change in the elastic potential energy (the potential energy associated with the tensile stress in the wire). Compare the answers in parts (d) and (e).
1.62 On a training flight, a Figure P1.62
student pilot flies from Lincoln,
Nebraska, to Clarinda, Iowa, next
to St. Joseph, Missouri, and then to
Manhattan, Kansas (Fig. P1.62). The
directions are shown relative to north:
0° is north, 90° is east, 180° is south,
and 270° is west. Use the method of
components to find (a) the distance
she has to fly from Manhattan to get
back to Lincoln, and (b) the direction
(relative to north) she must fly to get
there. Illustrate your solutions with a
vector diagram.
IOWA
147 km
Lincoln 85°
Clarinda
106 km
167°
St. Joseph
NEBRASKA
Manhattan
166 km
235°
S KANSAS MISSOURI
Plz no chatgpt pls will upvote
3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi-
raffe if you toss a quarter into a small dish. The dish is on a shelf above
the point where the quarter leaves your hand and is a horizontal dis-
tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with
a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin
will land in the dish. Ignore air resistance. (a) What is the height of the
shelf above the point where the quarter leaves your hand? (b) What is
the vertical component of the velocity of the quarter just before it lands
in the dish?
Figure E3.19
6.4 m/s
2.1
Chapter 11 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.