Mathematics All Around, Books a la carte edition (6th Edition)
6th Edition
ISBN: 9780134462448
Author: Pirnot, Tom
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.CT, Problem 3CT
The Metropolitan Community College Arts Council will consist of eight members. The seats are to be apportioned according to student participation in the areas of art (47 students), music (111students), and theater (39 students). Use the Hamilton method to apportion the council.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A manufacturing unit has to appoint a committee
consisting of 4 people. There are 9 eligible candidates
for the committee. Find the number of ways of forming
the committee.
In the 2010 census, the population of state A in thousands was 4,773, State B was 2,986, and State C was 4,587. Apportion 16 representative seats to these three states. Assign the seats using the Hamilton apportionment method.
The representation includes 5 members from State A
20 people have volunteered for a 5-person neighborhood advocacy committee. 11 of them are homeowners and the rest are local business owners. How many ways are there to select the 5-person committee such that exactly 2 local business owners are represented?
Answer:?
Chapter 10 Solutions
Mathematics All Around, Books a la carte edition (6th Edition)
Ch. 10.1 - Sharpening your Skills In Exercises 1-6, use the...Ch. 10.1 - Sharpening your Skills In Exercises 1-6, use the...Ch. 10.1 - Sharpening your Skills In Exercises 1-6, use the...Ch. 10.1 - Sharpening your Skills In Exercises 1-6, use the...Ch. 10.1 - Sharpening your Skills In Exercises 1-6, use the...Ch. 10.1 - Prob. 6ECh. 10.1 - Sharpening Your Skills If the American Nurses...Ch. 10.1 - Prob. 8ECh. 10.1 - Sharpening your Skills Which state is more poorly...Ch. 10.1 - Prob. 10E
Ch. 10.1 - Sharpening your Skills Recall that on a 10-member...Ch. 10.1 - Sharpening your Skills Redo Exercise 11 for Aroco...Ch. 10.1 - Sharpening your Skills Apportioning...Ch. 10.1 - Sharpening your Skills Apportioning...Ch. 10.1 - Applying What Youve Learned The Alabama paradox....Ch. 10.1 - Applying What Youve Learned The Alabama paradox....Ch. 10.1 - Applying What Youve Learned The Alabama paradox...Ch. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 25ECh. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.1 - Prob. 28ECh. 10.2 - Prob. 1ECh. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - Prob. 5ECh. 10.2 - Prob. 6ECh. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Prob. 9ECh. 10.2 - Prob. 10ECh. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.2 - Prob. 18ECh. 10.2 - Prob. 19ECh. 10.2 - Prob. 20ECh. 10.2 - Prob. 21ECh. 10.2 - Prob. 22ECh. 10.2 - Prob. 23ECh. 10.2 - Prob. 24ECh. 10.2 - Prob. 25ECh. 10.2 - Prob. 26ECh. 10.2 - Prob. 27ECh. 10.2 - Prob. 28ECh. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.2 - Prob. 31ECh. 10.2 - Prob. 32ECh. 10.2 - Prob. 33ECh. 10.2 - Prob. 34ECh. 10.3 - In Exercises 1-4, we give you a total population,...Ch. 10.3 - Prob. 2ECh. 10.3 - In Exercises 1-4, we give you a total population,...Ch. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Use the Jefferson method to assign the seats on...Ch. 10.3 - Prob. 7ECh. 10.3 - Prob. 8ECh. 10.3 - Choosing representatives on a negotiations...Ch. 10.3 - Prob. 10ECh. 10.3 - Prob. 11ECh. 10.3 - Use the Webster method to apportion the members of...Ch. 10.3 - Prob. 13ECh. 10.3 - Prob. 14ECh. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.3 - Prob. 20ECh. 10.3 - Prob. 21ECh. 10.3 - Prob. 22ECh. 10.3 - Prob. 23ECh. 10.3 - Use the Webster method to assign the number of...Ch. 10.3 - Prob. 25ECh. 10.3 - Prob. 26ECh. 10.3 - Prob. 27ECh. 10.3 - In Exercises 25-32, we use the Hamilton method to...Ch. 10.3 - Prob. 29ECh. 10.3 - Prob. 30ECh. 10.3 - In Exercises 25-32, we use the Hamilton method to...Ch. 10.3 - In Exercises 25-32, we use the Hamilton method to...Ch. 10.3 - Exercises 33-36Illustrate that the Jefferson and...Ch. 10.3 - Prob. 34ECh. 10.3 - Prob. 35ECh. 10.3 - Prob. 36ECh. 10.3 - Prob. 37ECh. 10.3 - Prob. 38ECh. 10.3 - Prob. 39ECh. 10.3 - Prob. 40ECh. 10.3 - Prob. 43ECh. 10.3 - Prob. 44ECh. 10.3 - Prob. 45ECh. 10.3 - Prob. 46ECh. 10.3 - Prob. 47ECh. 10.4 - Identify each situation as dealing with either...Ch. 10.4 - Identify each situation as dealing with either...Ch. 10.4 - Use the method of sealed bids to complete the...Ch. 10.4 - Prob. 4ECh. 10.4 - Use the method of sealed bids to complete the...Ch. 10.4 - Prob. 6ECh. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Prob. 9ECh. 10.4 - Use the method of sealed bids to complete the...Ch. 10.4 - Prob. 11ECh. 10.4 - Prob. 12ECh. 10.4 - Prob. 13ECh. 10.4 - Prob. 14ECh. 10.4 - Prob. 15ECh. 10.4 - In Exercises 15 and 16, use the method of sealed...Ch. 10.4 - Prob. 17ECh. 10.4 - Prob. 18ECh. 10.4 - Prob. 19ECh. 10.4 - Prob. 20ECh. 10.4 - Prob. 21ECh. 10.4 - Prob. 22ECh. 10.4 - Prob. 23ECh. 10.4 - Prob. 24ECh. 10.4 - Prob. 25ECh. 10.4 - Prob. 26ECh. 10.4 - Prob. 27ECh. 10.4 - Prob. 28ECh. 10.CR - Prob. 1CRCh. 10.CR - Prob. 2CRCh. 10.CR - Prob. 3CRCh. 10.CR - Prob. 4CRCh. 10.CR - Prob. 5CRCh. 10.CR - Prob. 6CRCh. 10.CR - Prob. 7CRCh. 10.CR - Prob. 8CRCh. 10.CR - Prob. 9CRCh. 10.CR - Prob. 10CRCh. 10.CR - Prob. 11CRCh. 10.CR - Prob. 12CRCh. 10.CR - Prob. 13CRCh. 10.CR - Prob. 14CRCh. 10.CR - Prob. 15CRCh. 10.CR - Prob. 16CRCh. 10.CT - What is the Alabama paradox?Ch. 10.CT - Suppose state C has a population of 1,640,000 and...Ch. 10.CT - The Metropolitan Community College Arts Council...Ch. 10.CT - Prob. 4CTCh. 10.CT - Suppose that Arizona has a population of 5.23...Ch. 10.CT - Prob. 6CTCh. 10.CT - Prob. 7CTCh. 10.CT - Prob. 8CTCh. 10.CT - Prob. 9CTCh. 10.CT - Prob. 10CTCh. 10.CT - Prob. 11CTCh. 10.CT - Prob. 12CTCh. 10.CT - Prob. 13CTCh. 10.CT - Prob. 14CTCh. 10.CT - Three brothersLarry, Moe, and Curlyare dissolving...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- seven students are running for student council. How many different ways can thier names be listed on the ballot?arrow_forwardfive candidates: claire, jimmy, jessie, kent and gina are running for president of the student government. after the polls close, votes are called and the results in the table below are obtained: candidate claire jimmy jessie number of 318 402 760 votes questions: a. how many votes were casted? b. using the plurality method of voting, which candidate wins? c. did the winner receive majority of the votes? kent gina 1,035 485arrow_forwardTwenty sections of bilingual math courses, taught in both English and Spanish, are to be offered in introductory algebra, intermediate algebra, and liberal arts math. The preregistration figures for the number of students planning to enroll in these bilingual sections are given in the following table. Use Webster's method with d = 29.6 to determine how many bilingual sections of each course should be offered. Course Introductory Algebra| Intermediate Algebra Liberal Arts Math Enrollment 139 271 182 ..... Course Introductory Algebra Number of Apportioned Sections 5 (Type an integer.) Course Intermediate Algebra Number of Apportioned Sections (Type an integer.)arrow_forward
- Carl has just started a project where he needs to gather demographic information about the personnel at a company's three locations. Primarily, he wants to know the gender, level of education, and ethnic/racial backgrounds of the company's workforce. Use the information from the employee survey to create charts showing the demographic breakdowns in the three cities Carl is examining. Write a fraction with the number of employees in each category as the numerator and the total number of employees in each city as the denominator. Convert the fraction to a decimal. Check your calculations by adding the decimals representing the number of men and women in each city. Complete the chart. Gender City A City B City C Men 420 350 135 Women 130 525 65 Total 550 875 200arrow_forwardThe “Waterside Road” band fan club has 18 members. They need to elect a president, a secretary, and a treasurer. How many different arrangements are possible?arrow_forwardPlease show working outs.arrow_forward
- A university is made up of five schools: Liberal Arts, Sciences, Engineering, Business, and Humanities. There are 243 new computers to be apportioned among the five schools based on their enrollment shown below. The total enrollment is 13,851. Determine each school's apportionment using Jefferson's method. School Enrollment Liberal Arts Sciences Engineering 1706 7985 2127 Business 949 Humanities 1084 What is each school's apportionment using Jefferson's method? Hint: Some divisors between 56 and 57 will work. School Liberal Arts Sciences Engineering Business 1706 7985 2127 949 Enrollment Allocated computers (Type whole numbers.) Humanities 1084arrow_forwardA company has four divisions with 560, 1230, 1490, and 1760 people, respectively. A total of 18 IT workers must be allocated to each division according to their size. find the apportionment using the Hill-Huntington method. a. find standard divisor b. Find the standard quota and modified standard quota for each division.arrow_forwarda city council with six members must elect a four-person executive committee consisting of a mayor, deputy mayor, secretary, and treasurer. How many executive committees are possible?arrow_forward
- A hospital has 199 nurses to be apportioned among four shifts: Shifts A, B, C, and D. The hospital decides to apportion the nurses based on the average number of room calls reported during each shift. Room calls are shown in the table below. Use the table to determine each shift's apportionment using Jefferson's method. Shift A B C D Total Room calls 856 995 518 218 2587 Determine each shift's apportionment using Jefferson's method. (Note: Divisors do not have to be whole numbers.)arrow_forwardA company has four divisions with 560, 1230, 1490, and 1760 people, respectively. A total of 18 IT workers must be allocated to each division according to their size. Complete parts (a) through (d) to find the apportionment using the Hill-Huntington method. Find the standard divisor. Find the standard quota and modified standard quota for each division. Using a modified standard divisor of 275, find the modified quota for each division. Find the geometric mean for each division. Show the rounded quota (according to the Hill-Huntington method) for each division and the final apportionment of IT workers. PLEASE WATCH GRAMMAR, PUNCTUATION, AND HAVE CLEAR FORMATTING. Thank you.arrow_forwardA campus club needs to elect four officers: a president, a vice president, a secretary, and a treasurer. The club has five volunteers. Rather than vote individually for each position, the club members will rank the candidates in order of preference. The votes will then be tallied using the Borda Count method. The candidate receiving the highest number of points will be president, the candidate receiving the next highest number of points is vice president, the candidate receiving the next highest number of points is secretary, and the candidate receiving the next highest number of points will be treasurer. Rankings Cynthia 4 2 3 Andrew 3 1 4 Jen 5 1 Hector 1 1 4 Medin 3 4 Number of votes: 24 8 15 14 For the preference schedule shown, determine who wins each position in the club.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY